
http://www.tuto rialspo int.co m/pytho n/pytho n_classes_o bjects.htm Copyrig ht © tutorialspoint.com

PYTHON OBJECT ORIENTED

Python has been an object-oriented lang uag e from day one. Because of this, creating and using classes and
objects are downrig ht easy. This chapter helps you become an expert in using Python's object-oriented
prog ramming support.

If you don't have any previous experience with object-oriented (OO) prog ramming , you may want to consult an
introductory course on it or at least a tutorial of some sort so that you have a g rasp of the basic concepts.

However, here is small introduction of Object-Oriented Prog ramming (OOP) to bring you at speed:

Overview of OOP Terminolog y

Class: A user-defined prototype for an object that defines a set of attributes that characterize any object
of the class. The attributes are data members (class variables and instance variables) and methods,
accessed via dot notation.

Class variable: A variable that is shared by all instances of a class. Class variables are defined within a
class but outside any of the class's methods. Class variables aren't used as frequently as instance variables
are.

Data member: A class variable or instance variable that holds data associated with a class and its
objects.

Function overloading : The assig nment of more than one behavior to a particular function. The
operation performed varies by the types of objects (arg uments) involved.

Instance variable: A variable that is defined inside a method and belong s only to the current instance of
a class.

Inheritance : The transfer of the characteristics of a class to other classes that are derived from it.

Instance: An individual object of a certain class. An object obj that belong s to a class Circle, for
example, is an instance of the class Circle.

Instantiation : The creation of an instance of a class.

Method : A special kind of function that is defined in a class definition.

Object : A unique instance of a data structure that's defined by its class. An object comprises both data
members (class variables and instance variables) and methods.

Operator overloading : The assig nment of more than one function to a particular operator.

Creating Classes:

The class statement creates a new class definition. The name of the class immediately follows the keyword class
followed by a colon as follows:

class ClassName:
 'Optional class documentation string'
 class_suite

The class has a documentation string , which can be accessed via ClassName.__doc__.

The class_suite consists of all the component statements defining class members, data attributes and
functions.

Example:

Following is the example of a simple Python class:

http://www.tutorialspoint.com/python/python_classes_objects.htm

class Employee:
 'Common base class for all employees'
 empCount = 0

 def __init__(self, name, salary):
 self.name = name
 self.salary = salary
 Employee.empCount += 1

 def displayCount(self):
 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):
 print "Name : ", self.name, ", Salary: ", self.salary

The variable empCount is a class variable whose value would be shared among all instances of a this class.
This can be accessed as Employee.empCount from inside the class or outside the class.

The first method __init__() is a special method, which is called class constructor or initialization method
that Python calls when you create a new instance of this class.

You declare other class methods like normal functions with the exception that the first arg ument to each
method is self. Python adds the self arg ument to the list for you; you don't need to include it when you call
the methods.

Creating instance objects:

To create instances of a class, you call the class using class name and pass in whatever arg uments its __init__
method accepts.

"This would create first object of Employee class"
emp1 = Employee("Zara", 2000)
"This would create second object of Employee class"
emp2 = Employee("Manni", 5000)

Accessing attributes:

You access the object's attributes using the dot operator with object. Class variable would be accessed using
class name as follows:

emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount

Now, putting all the concepts tog ether:

#!/usr/bin/python

class Employee:
 'Common base class for all employees'
 empCount = 0

 def __init__(self, name, salary):
 self.name = name
 self.salary = salary
 Employee.empCount += 1

 def displayCount(self):
 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):
 print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"
emp1 = Employee("Zara", 2000)
"This would create second object of Employee class"
emp2 = Employee("Manni", 5000)

emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount

When the above code is executed, it produces the following result:

Name : Zara ,Salary: 2000
Name : Manni ,Salary: 5000
Total Employee 2

You can add, remove or modify attributes of classes and objects at any time:

emp1.age = 7 # Add an 'age' attribute.
emp1.age = 8 # Modify 'age' attribute.
del emp1.age # Delete 'age' attribute.

Instead of using the normal statements to access attributes, you can use following functions:

The g etattr(obj, name[, default]) : to access the attribute of object.

The hasattr(obj,name) : to check if an attribute exists or not.

The setattr(obj,name,value) : to set an attribute. If attribute does not exist, then it would be created.

The delattr(obj, name) : to delete an attribute.

hasattr(emp1, 'age') # Returns true if 'age' attribute exists
getattr(emp1, 'age') # Returns value of 'age' attribute
setattr(emp1, 'age', 8) # Set attribute 'age' at 8
delattr(empl, 'age') # Delete attribute 'age'

Built-In Class Attributes:

Every Python class keeps following built-in attributes and they can be accessed using dot operator like any other
attribute:

__dict__ : Dictionary containing the class's namespace.

__doc__ : Class documentation string or None if undefined.

__name__: Class name.

__module__: Module name in which the class is defined. This attribute is "__main__" in interactive
mode.

__bases__ : A possibly empty tuple containing the base classes, in the order of their occurrence in the
base class list.

For the above class let's try to access all these attributes:

#!/usr/bin/python

class Employee:
 'Common base class for all employees'
 empCount = 0

 def __init__(self, name, salary):
 self.name = name
 self.salary = salary
 Employee.empCount += 1

 def displayCount(self):
 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):
 print "Name : ", self.name, ", Salary: ", self.salary

print "Employee.__doc__:", Employee.__doc__
print "Employee.__name__:", Employee.__name__
print "Employee.__module__:", Employee.__module__
print "Employee.__bases__:", Employee.__bases__
print "Employee.__dict__:", Employee.__dict__

When the above code is executed, it produces the following result:

Employee.__doc__: Common base class for all employees
Employee.__name__: Employee
Employee.__module__: __main__
Employee.__bases__: ()
Employee.__dict__: {'__module__': '__main__', 'displayCount':
<function displayCount at 0xb7c84994>, 'empCount': 2,
'displayEmployee': <function displayEmployee at 0xb7c8441c>,
'__doc__': 'Common base class for all employees',
'__init__': <function __init__ at 0xb7c846bc>}

Destroying Objects (Garbag e Collection):

Python deletes unneeded objects (built-in types or class instances) automatically to free memory space. The
process by which Python periodically reclaims blocks of memory that no long er are in use is termed g arbag e
collection.

Python's g arbag e collector runs during prog ram execution and is trig g ered when an object's reference count
reaches zero. An object's reference count chang es as the number of aliases that point to it chang es.

An object's reference count increases when it's assig ned a new name or placed in a container (list, tuple or
dictionary). The object's reference count decreases when it's deleted with del, its reference is reassig ned, or its
reference g oes out of scope. When an object's reference count reaches zero, Python collects it automatically.

a = 40 # Create object <40>
b = a # Increase ref. count of <40>
c = [b] # Increase ref. count of <40>

del a # Decrease ref. count of <40>
b = 100 # Decrease ref. count of <40>
c[0] = -1 # Decrease ref. count of <40>

You normally won't notice when the g arbag e collector destroys an orphaned instance and reclaims its space. But
a class can implement the special method __del__(), called a destructor, that is invoked when the instance is
about to be destroyed. This method mig ht be used to clean up any nonmemory resources used by an instance.

Example:

This __del__() destructor prints the class name of an instance that is about to be destroyed:

#!/usr/bin/python

class Point:
 def __init(self, x=0, y=0):
 self.x = x
 self.y = y
 def __del__(self):
 class_name = self.__class__.__name__
 print class_name, "destroyed"

pt1 = Point()
pt2 = pt1
pt3 = pt1
print id(pt1), id(pt2), id(pt3) # prints the ids of the obejcts
del pt1
del pt2
del pt3

When the above code is executed, it produces following result:

3083401324 3083401324 3083401324
Point destroyed

Note: Ideally, you should define your classes in separate file, then you should import them in your main prog ram
file using import statement. Kindly check Python - Modules chapter for more details on importing modules and
classes.

Class Inheritance:

Instead of starting from scratch, you can create a class by deriving it from a preexisting class by listing the parent
class in parentheses after the new class name.

The child class inherits the attributes of its parent class, and you can use those attributes as if they were defined in
the child class. A child class can also override data members and methods from the parent.

Syntax:

Derived classes are declared much like their parent class; however, a list of base classes to inherit from are
g iven after the class name:

class SubClassName (ParentClass1[, ParentClass2, ...]):
 'Optional class documentation string'
 class_suite

Example:

#!/usr/bin/python

class Parent: # define parent class
 parentAttr = 100
 def __init__(self):
 print "Calling parent constructor"

 def parentMethod(self):
 print 'Calling parent method'

 def setAttr(self, attr):
 Parent.parentAttr = attr

 def getAttr(self):
 print "Parent attribute :", Parent.parentAttr

class Child(Parent): # define child class
 def __init__(self):
 print "Calling child constructor"

 def childMethod(self):
 print 'Calling child method'

c = Child() # instance of child
c.childMethod() # child calls its method
c.parentMethod() # calls parent's method
c.setAttr(200) # again call parent's method
c.getAttr() # again call parent's method

When the above code is executed, it produces the following result:

Calling child constructor
Calling child method
Calling parent method
Parent attribute : 200

Similar way, you can drive a class from multiple parent classes as follows:

class A: # define your class A
.....

/python/python_modules.htm

class B: # define your calss B
.....

class C(A, B): # subclass of A and B
.....

You can use issubclass() or isinstance() functions to check a relationships of two classes and instances.

The issubclass(sub, sup) boolean function returns true if the g iven subclass sub is indeed a subclass
of the superclass sup.

The isinstance(obj, Class) boolean function returns true if obj is an instance of class Class or is an
instance of a subclass of Class

Overriding Methods:

You can always override your parent class methods. One reason for overriding parent's methods is because you
may want special or different functionality in your subclass.

Example:

#!/usr/bin/python

class Parent: # define parent class
 def myMethod(self):
 print 'Calling parent method'

class Child(Parent): # define child class
 def myMethod(self):
 print 'Calling child method'

c = Child() # instance of child
c.myMethod() # child calls overridden method

When the above code is executed, it produces the following result:

Calling child method

Base Overloading Methods:

Following table lists some g eneric functionality that you can override in your own classes:

SN Method, Description & Sample Call

1 __init__ (self [,arg s...])
Constructor (with any optional arg uments)
Sample Call : obj = className(args)

2 __del__(self)
Destructor, deletes an object
Sample Call : dell obj

3 __repr__(self)
Evaluatable string representation
Sample Call : repr(obj)

4 __str__(self)
Printable string representation
Sample Call : str(obj)

5 __cmp__ (self, x)
Object comparison
Sample Call : cmp(obj, x)

Overloading Operators:

Suppose you've created a Vector class to represent two-dimensional vectors, what happens when you use the
plus operator to add them? Most likely Python will yell at you.

You could, however, define the __add__ method in your class to perform vector addition and then the plus
operator would behave as per expectation:

Example:

#!/usr/bin/python

class Vector:
 def __init__(self, a, b):
 self.a = a
 self.b = b

 def __str__(self):
 return 'Vector (%d, %d)' % (self.a, self.b)

 def __add__(self,other):
 return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)
v2 = Vector(5,-2)
print v1 + v2

When the above code is executed, it produces the following result:

Vector(7,8)

Data Hiding :

An object's attributes may or may not be visible outside the class definition. For these cases, you can name
attributes with a double underscore prefix, and those attributes will not be directly visible to outsiders.

Example:

#!/usr/bin/python

class JustCounter:
 __secretCount = 0

 def count(self):
 self.__secretCount += 1
 print self.__secretCount

counter = JustCounter()
counter.count()
counter.count()
print counter.__secretCount

When the above code is executed, it produces the following result:

1
2
Traceback (most recent call last):
 File "test.py", line 12, in <module>
 print counter.__secretCount
AttributeError: JustCounter instance has no attribute '__secretCount'

Python protects those members by internally chang ing the name to include the class name. You can access such
attributes as object._className__attrName. If you would replace your last line as following , then it would work

for you:

.........................
print counter._JustCounter__secretCount

When the above code is executed, it produces the following result:

1
2
2

	PYTHON OBJECT ORIENTED
	Overview of OOP Terminology
	Creating Classes:
	Example:

	Creating instance objects:
	Accessing attributes:
	Built-In Class Attributes:
	Destroying Objects (Garbage Collection):
	Example:

	Class Inheritance:
	Syntax:
	Example:

	Overriding Methods:
	Example:

	Base Overloading Methods:
	Overloading Operators:
	Example:

	Data Hiding:
	Example:

