
http://www.tuto rialspo int.co m/pytho n/pytho n_cg i_pro g ramming .htm Copyrig ht © tutorialspoint.com

PYTHON CGI PROGRAMMING

What is CGI?

The Common Gateway Interface, or CGI, is a set of standards that define how information is exchang ed
between the web server and a custom script.

The CGI specs are currently maintained by the NCSA and NCSA defines CGI is as follows:

The Common Gateway Interface, or CGI, is a standard for external g ateway prog rams to interface with
information servers such as HTTP servers.

The current version is CGI/1.1 and CGI/1.2 is under prog ress.

Web Browsing

To understand the concept of CGI, lets see what happens when we click a hyper link to browse a particular web
pag e or URL.

Your browser contacts the HTTP web server and demands for the URL i.e., filename.

Web Server will parse the URL and will look for the filename in if it finds that file then sends it back to the
browser, otherwise sends an error messag e indicating that you have requested a wrong file.

Web browser takes response from web server and displays either the received file or error messag e.

However, it is possible to set up the HTTP server so that whenever a file in a certain directory is requested that
file is not sent back; instead it is executed as a prog ram, and whatever that prog ram outputs is sent back for your
browser to display. This function is called the Common Gateway Interface or CGI and the prog rams are called
CGI scripts. These CGI prog rams can be a Python Script, PERL Script, Shell Script, C or C++ prog ram, etc.

CGI Architecture Diag ram

Web Server Support & Config uration

Before you proceed with CGI Prog ramming , make sure that your Web Server supports CGI and it is config ured
to handle CGI Prog rams. All the CGI Prog rams to be executed by the HTTP server are kept in a pre-config ured
directory. This directory is called CGI Directory and by convention it is named as /var/www/cg i-bin. By
convention, CGI files will have extension as .cg i, but you can keep your files with python extension .py as well.

By default, the Linux server is config ured to run only the scripts in the cg i-bin directory in /var/www. If you want
to specify any other directory to run your CGI scripts, comment the following lines in the httpd.conf file:

<Directory "/var/www/cgi-bin">
 AllowOverride None
 Options ExecCGI
 Order allow,deny

http://www.tutorialspoint.com/python/python_cgi_programming.htm

 Allow from all
</Directory>

<Directory "/var/www/cgi-bin">
Options All
</Directory>

Here, I assumed that you have Web Server up and running successfully and you are able to run any other CGI
prog ram like Perl or Shell, etc.

First CGI Prog ram

Here is a simple link, which is linked to a CGI script called hello.py. This file is being kept in /var/www/cg i-bin
directory and it has following content. Before running your CGI prog ram, make sure you have chang e mode of
file using chmod 755 hello.py UNIX command to make file executable.

#!/usr/bin/python

print "Content-type:text/html\r\n\r\n"
print '<html>'
print '<head>'
print '<title>Hello Word - First CGI Program</title>'
print '</head>'
print '<body>'
print '<h2>Hello Word! This is my first CGI program</h2>'
print '</body>'
print '</html>'

If you click hello.py, then this produces the following output:

Hello Word! This is my first CGI prog ram

This hello.py script is a simple Python script, which is writing its output on STDOUT file i.e., screen. There is one
important and extra feature available which is first line to be printed Content-type:text/html\r\n\r\n. This
line is sent back to the browser and specifiy the content type to be displayed on the browser screen.

Now, you must have understood basic concept of CGI and you can write many complicated CGI prog rams using
Python. This script can interact with any other external system also to exchang e information such as RDBMS.

HTTP Header

The line Content-type:text/html\r\n\r\n is part of HTTP header which is sent to the browser to
understand the content. All the HTTP header will be in the following form:

HTTP Field Name: Field Content

For Example
Content-type: text/html\r\n\r\n

There are few other important HTTP headers, which you will use frequently in your CGI Prog ramming .

Header Description

Content-type: A MIME string defining the format of the file being returned. Example is
Content-type:text/html

Expires: Date The date the information becomes invalid. This should be used by the
browser to decide when a pag e needs to be refreshed. A valid date string
should be in the format 01 Jan 1998 12:00:00 GMT.

/cgi-bin/hello.py

Location: URL The URL that should be returned instead of the URL requested. You can
use this field to redirect a request to any file.

Last-modified: Date The date of last modification of the resource.

Content-leng th: N The leng th, in bytes, of the data being returned. The browser uses this
value to report the estimated download time for a file.

Set-Cookie: String Set the cookie passed throug h the string

CGI Environment Variables

All the CGI prog ram will have access to the following environment variables. These variables play an important
role while writing any CGI prog ram.

Variable Name Description

CONTENT_TYPE The data type of the content. Used when the client is sending attached
content to the server. For example, file upload, etc.

CONTENT_LENGTH The leng th of the query information. It's available only for POST requests.

HTTP_COOKIE Returns the set cookies in the form of key & value pair.

HTTP_USER_AGENT The User-Ag ent request-header field contains information about the user
ag ent orig inating the request. Its name of the web browser.

PATH_INFO The path for the CGI script.

QUERY_STRING The URL-encoded information that is sent with GET method request.

REMOTE_ADDR The IP address of the remote host making the request. This can be useful
for log g ing or for authentication purpose.

REMOTE_HOST The fully qualified name of the host making the request. If this information is
not available then REMOTE_ADDR can be used to g et IR address.

REQUEST_METHOD The method used to make the request. The most common methods are
GET and POST.

SCRIPT_FILENAME The full path to the CGI script.

SCRIPT_NAME The name of the CGI script.

SERVER_NAME The server's hostname or IP Address

SERVER_SOFTWARE The name and version of the software the server is running .

Here is small CGI prog ram to list out all the CGI variables. Click this link to see the result Get Environment

#!/usr/bin/python

import os

print "Content-type: text/html\r\n\r\n";
print "Environment<\br>";
for param in os.environ.keys():
 print "%20s: %s<\br>" % (param, os.environ[param])

GET and POST Methods

http://www.tutorialspoint.com/cgi-bin/get_env.py

You must have come across many situations when you need to pass some information from your browser to web
server and ultimately to your CGI Prog ram. Most frequently, browser uses two methods two pass this
information to web server. These methods are GET Method and POST Method.

Passing Information using GET method:

The GET method sends the encoded user information appended to the pag e request. The pag e and the
encoded information are separated by the ? character as follows:

http://www.test.com/cgi-bin/hello.py?key1=value1&key2=value2

The GET method is the default method to pass information from browser to web server and it produces a long
string that appears in your browser's Location:box. Never use GET method if you have password or other
sensitive information to pass to the server. The GET method has size limtation: only 1024 characters can be sent
in a request string . The GET method sends information using QUERY_STRING header and will be accessible in
your CGI Prog ram throug h QUERY_STRING environment variable.

You can pass information by simply concatenating key and value pairs along with any URL or you can use HTML
<FORM> tag s to pass information using GET method.

Simple URL Example : Get Method

Here is a simple URL, which will pass two values to hello_g et.py prog ram using GET method.

/cg i-bin/hello_g et.py?first_name=ZARA&last_name=ALI

Below is hello_g et.py script to handle input g iven by web browser. We are g oing to use cg i module, which
makes it very easy to access passed information:

#!/usr/bin/python

Import modules for CGI handling
import cgi, cgitb

Create instance of FieldStorage
form = cgi.FieldStorage()

Get data from fields
first_name = form.getvalue('first_name')
last_name = form.getvalue('last_name')

print "Content-type:text/html\r\n\r\n"
print "<html>"
print "<head>"
print "<title>Hello - Second CGI Program</title>"
print "</head>"
print "<body>"
print "<h2>Hello %s %s</h2>" % (first_name, last_name)
print "</body>"
print "</html>"

This would g enerate the following result:

Hello ZARA ALI

Simple FORM Example: GET Method

Here is a simple example which passes two values using HTML FORM and submit button. We are g oing to use
same CGI script hello_g et.py to handle this imput.

<form action="/cgi-bin/hello_get.py" method="get">

/cgi-bin/hello_get.py?first_name=ZARA&last_name=ALI

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />
<input type="submit" value="Submit" />
</form>

Here is the actual output of the above form, You enter First and Last Name and then click submit button to see the
result.

First Name:

Last Name:

Passing Information using POST method:

A g enerally more reliable method of passing information to a CGI prog ram is the POST method. This packag es
the information in exactly the same way as GET methods, but instead of sending it as a text string after a ? in the
URL it sends it as a separate messag e. This messag e comes into the CGI script in the form of the standard input.

Below is same hello_g et.py script which handles GET as well as POST method.

#!/usr/bin/python

Import modules for CGI handling
import cgi, cgitb

Create instance of FieldStorage
form = cgi.FieldStorage()

Get data from fields
first_name = form.getvalue('first_name')
last_name = form.getvalue('last_name')

print "Content-type:text/html\r\n\r\n"
print "<html>"
print "<head>"
print "<title>Hello - Second CGI Program</title>"
print "</head>"
print "<body>"
print "<h2>Hello %s %s</h2>" % (first_name, last_name)
print "</body>"
print "</html>"

Let us take ag ain same example as above which passes two values using HTML FORM and submit button. We
are g oing to use same CGI script hello_g et.py to handle this imput.

<form action="/cgi-bin/hello_get.py" method="post">
First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />
</form>

Here is the actual output of the above form. You enter First and Last Name and then click submit button to see the
result.

First Name:

Last Name:

Passing Checkbox Data to CGI Prog ram

Checkboxes are used when more than one option is required to be selected.

Here is example HTML code for a form with two checkboxes:

<form action="/cgi-bin/checkbox.cgi" method="POST" target="_blank">
<input type="checkbox" name="maths" value="on" /> Maths
<input type="checkbox" name="physics" value="on" /> Physics
<input type="submit" value="Select Subject" />
</form>

The result of this code is the following form:

 Maths Physics

Below is checkbox.cg i script to handle input g iven by web browser for checkbox button.

#!/usr/bin/python

Import modules for CGI handling
import cgi, cgitb

Create instance of FieldStorage
form = cgi.FieldStorage()

Get data from fields
if form.getvalue('maths'):
 math_flag = "ON"
else:
 math_flag = "OFF"

if form.getvalue('physics'):
 physics_flag = "ON"
else:
 physics_flag = "OFF"

print "Content-type:text/html\r\n\r\n"
print "<html>"
print "<head>"
print "<title>Checkbox - Third CGI Program</title>"
print "</head>"
print "<body>"
print "<h2> CheckBox Maths is : %s</h2>" % math_flag
print "<h2> CheckBox Physics is : %s</h2>" % physics_flag
print "</body>"
print "</html>"

Passing Radio Button Data to CGI Prog ram

Radio Buttons are used when only one option is required to be selected.

Here is example HTML code for a form with two radio buttons:

<form action="/cgi-bin/radiobutton.py" method="post" target="_blank">
<input type="radio" name="subject" value="maths" /> Maths
<input type="radio" name="subject" value="physics" /> Physics
<input type="submit" value="Select Subject" />
</form>

The result of this code is the following form:

 Maths Physics

Below is radiobutton.py script to handle input g iven by web browser for radio button:

#!/usr/bin/python

Import modules for CGI handling
import cgi, cgitb

Create instance of FieldStorage

form = cgi.FieldStorage()

Get data from fields
if form.getvalue('subject'):
 subject = form.getvalue('subject')
else:
 subject = "Not set"

print "Content-type:text/html\r\n\r\n"
print "<html>"
print "<head>"
print "<title>Radio - Fourth CGI Program</title>"
print "</head>"
print "<body>"
print "<h2> Selected Subject is %s</h2>" % subject
print "</body>"
print "</html>"

Passing Text Area Data to CGI Prog ram

TEXTAREA element is used when multiline text has to be passed to the CGI Prog ram.

Here is example HTML code for a form with a TEXTAREA box:

<form action="/cgi-bin/textarea.py" method="post" target="_blank">
<textarea name="textcontent" cols="40" rows="4">
Type your text here...
</textarea>
<input type="submit" value="Submit" />
</form>

The result of this code is the following form:

Type your text here...

Below is textarea.cg i script to handle input g iven by web browser:

#!/usr/bin/python

Import modules for CGI handling
import cgi, cgitb

Create instance of FieldStorage
form = cgi.FieldStorage()

Get data from fields
if form.getvalue('textcontent'):
 text_content = form.getvalue('textcontent')
else:
 text_content = "Not entered"

print "Content-type:text/html\r\n\r\n"
print "<html>"
print "<head>";
print "<title>Text Area - Fifth CGI Program</title>"
print "</head>"
print "<body>"
print "<h2> Entered Text Content is %s</h2>" % text_content
print "</body>"

Passing Drop Down Box Data to CGI Prog ram

Drop Down Box is used when we have many options available but only one or two will be selected.

Here is example HTML code for a form with one drop down box:

<form action="/cgi-bin/dropdown.py" method="post" target="_blank">
<select name="dropdown">
<option value="Maths" selected>Maths</option>
<option value="Physics">Physics</option>
</select>
<input type="submit" value="Submit"/>
</form>

The result of this code is the following form:

Maths

Below is dropdown.py script to handle input g iven by web browser.

#!/usr/bin/python

Import modules for CGI handling
import cgi, cgitb

Create instance of FieldStorage
form = cgi.FieldStorage()

Get data from fields
if form.getvalue('dropdown'):
 subject = form.getvalue('dropdown')
else:
 subject = "Not entered"

print "Content-type:text/html\r\n\r\n"
print "<html>"
print "<head>"
print "<title>Dropdown Box - Sixth CGI Program</title>"
print "</head>"
print "<body>"
print "<h2> Selected Subject is %s</h2>" % subject
print "</body>"
print "</html>"

Using Cookies in CGI

HTTP protocol is a stateless protocol. But for a commercial website, it is required to maintain session
information among different pag es. For example, one user reg istration ends after completing many pag es. But
how to maintain user's session information across all the web pag es.

In many situations, using cookies is the most efficient method of remembering and tracking preferences,
purchases, commissions, and other information required for better visitor experience or site statistics.

How It Works?

Your server sends some data to the visitor's browser in the form of a cookie. The browser may accept the
cookie. If it does, it is stored as a plain text record on the visitor's hard drive. Now, when the visitor arrives at
another pag e on your site, the cookie is available for retrieval. Once retrieved, your server knows/remembers
what was stored.

Cookies are a plain text data record of 5 variable-leng th fields:

Expires : The date the cookie will expire. If this is blank, the cookie will expire when the visitor quits the
browser.

Domain : The domain name of your site.

Path : The path to the directory or web pag e that sets the cookie. This may be blank if you want to
retrieve the cookie from any directory or pag e.

Secure : If this field contains the word "secure", then the cookie may only be retrieved with a secure
server. If this field is blank, no such restriction exists.

Name=Value : Cookies are set and retrieved in the form of key and value pairs.

Setting up Cookies

It is very easy to send cookies to browser. These cookies will be sent along with HTTP Header before to
Content-type field. Assuming you want to set UserID and Password as cookies. So cookies setting will be done
as follows:

#!/usr/bin/python

print "Set-Cookie:UserID=XYZ;\r\n"
print "Set-Cookie:Password=XYZ123;\r\n"
print "Set-Cookie:Expires=Tuesday, 31-Dec-2007 23:12:40 GMT";\r\n"
print "Set-Cookie:Domain=www.tutorialspoint.com;\r\n"
print "Set-Cookie:Path=/perl;\n"
print "Content-type:text/html\r\n\r\n"
...........Rest of the HTML Content....

From this example, you must have understood how to set cookies. We use Set-Cookie HTTP header to set
cookies.

Here, it is optional to set cookies attributes like Expires, Domain and Path. It is notable that cookies are set
before sending mag ic line "Content-type:text/html\r\n\r\n.

Retrieving Cookies

It is very easy to retrieve all the set cookies. Cookies are stored in CGI environment variable HTTP_COOKIE
and they will have following form:

key1=value1;key2=value2;key3=value3....

Here is an example of how to retrieve cookies.

#!/usr/bin/python

Import modules for CGI handling
from os import environ
import cgi, cgitb

if environ.has_key('HTTP_COOKIE'):
 for cookie in map(strip, split(environ['HTTP_COOKIE'], ';')):
 (key, value) = split(cookie, '=');
 if key == "UserID":
 user_id = value

 if key == "Password":
 password = value

print "User ID = %s" % user_id
print "Password = %s" % password

This will produce the following result for the cookies set by above script:

User ID = XYZ
Password = XYZ123

File Upload Example:

To upload a file, the HTML form must have the enctype attribute set to multipart/form-data. The input tag

with the file type will create a "Browse" button.

<html>
<body>
 <form enctype="multipart/form-data"
 action="save_file.py" method="post">
 <p>File: <input type="file" name="filename" /></p>
 <p><input type="submit" value="Upload" /></p>
 </form>
</body>
</html>

The result of this code is the following form:

File:

Above example has been disabled intentionally to save people uploading file on our server, but you can try above
code with your server.

Here is the script save_file.py to handle file upload:

#!/usr/bin/python

import cgi, os
import cgitb; cgitb.enable()

form = cgi.FieldStorage()

Get filename here.
fileitem = form['filename']

Test if the file was uploaded
if fileitem.filename:
 # strip leading path from file name to avoid
 # directory traversal attacks
 fn = os.path.basename(fileitem.filename)
 open('/tmp/' + fn, 'wb').write(fileitem.file.read())

 message = 'The file "' + fn + '" was uploaded successfully'

else:
 message = 'No file was uploaded'

print """\
Content-Type: text/html\n
<html>
<body>
 <p>%s</p>
</body>
</html>
""" % (message,)

If you are running above script on Unix/Linux, then you would have to take care of replacing file separator as
follows, otherwise on your windows machine above open() statement should work fine.

fn = os.path.basename(fileitem.filename.replace("\\", "/"))

How To Raise a "File Download" Dialog Box ?

Sometimes, it is desired that you want to g ive option where a user will click a link and it will pop up a "File
Download" dialog ue box to the user instead of displaying actual content. This is very easy and will be achieved
throug h HTTP header. This HTTP header will be different from the header mentioned in previous section.

For example,if you want make a FileName file downloadable from a g iven link, then its syntax will be as follows:

#!/usr/bin/python

HTTP Header
print "Content-Type:application/octet-stream; name=\"FileName\"\r\n";
print "Content-Disposition: attachment; filename=\"FileName\"\r\n\n";

Actual File Content will go hear.
fo = open("foo.txt", "rb")

str = fo.read();
print str

Close opend file
fo.close()

Hope you enjoyed this tutorial. If yes, please send me your feedback at: Contact Us

/about/contact_us.htm

	PYTHON CGI PROGRAMMING
	What is CGI?
	Web Browsing
	CGI Architecture Diagram
	Web Server Support & Configuration
	First CGI Program
	Hello Word! This is my first CGI program
	HTTP Header
	CGI Environment Variables
	GET and POST Methods
	Passing Information using GET method:
	Simple URL Example : Get Method
	Hello ZARA ALI
	Simple FORM Example: GET Method
	Passing Information using POST method:
	Passing Checkbox Data to CGI Program
	Passing Radio Button Data to CGI Program
	Passing Text Area Data to CGI Program
	Passing Drop Down Box Data to CGI Program
	Using Cookies in CGI
	How It Works?
	Setting up Cookies
	Retrieving Cookies
	File Upload Example:
	How To Raise a "File Download" Dialog Box ?

