
http://www.tuto rialspo int.co m/cplusplus/cpp_sto rag e_classes.htm Copyrig ht © tutorialspoint.com

STORAGE CLASSES IN C++

A storag e class defines the scope (visibility) and life-time of variables and/or functions within a C++ Prog ram.
These specifiers precede the type that they modify. There are following storag e classes, which can be used in a
C++ Prog ram

auto

reg ister

static

extern

mutable

The auto Storag e Class

The auto storag e class is the default storag e class for all local variables.

{
 int mount;
 auto int month;
}

The example above defines two variables with the same storag e class, auto can only be used within functions,
i.e., local variables.

The reg ister Storag e Class

The reg ister storag e class is used to define local variables that should be stored in a reg ister instead of RAM.
This means that the variable has a maximum size equal to the reg ister size (usually one word) and can't have the
unary '&' operator applied to it (as it does not have a memory location).

{
 register int miles;
}

The reg ister should only be used for variables that require quick access such as counters. It should also be
noted that defining 'reg ister' does not mean that the variable will be stored in a reg ister. It means that it MIGHT
be stored in a reg ister depending on hardware and implementation restrictions.

The static Storag e Class

The static storag e class instructs the compiler to keep a local variable in existence during the life-time of the
prog ram instead of creating and destroying it each time it comes into and g oes out of scope. Therefore, making
local variables static allows them to maintain their values between function calls.

The static modifier may also be applied to g lobal variables. When this is done, it causes that variable's scope to
be restricted to the file in which it is declared.

In C++, when static is used on a class data member, it causes only one copy of that member to be shared by all
objects of its class.

#include <iostream>

// Function declaration
void func(void);

static int count = 10; /* Global variable */

main()

http://www.tutorialspoint.com/cplusplus/cpp_storage_classes.htm

{
 while(count--)
 {
 func();
 }
 return 0;
}
// Function definition
void func(void)
{
 static int i = 5; // local static variable
 i++;
 std::cout << "i is " << i ;
 std::cout << " and count is " << count << std::endl;
}

When the above code is compiled and executed, it produces the following result:

i is 6 and count is 9
i is 7 and count is 8
i is 8 and count is 7
i is 9 and count is 6
i is 10 and count is 5
i is 11 and count is 4
i is 12 and count is 3
i is 13 and count is 2
i is 14 and count is 1
i is 15 and count is 0

The extern Storag e Class

The extern storag e class is used to g ive a reference of a g lobal variable that is visible to ALL the prog ram files.
When you use 'extern' the variable cannot be initialized as all it does is point the variable name at a storag e
location that has been previously defined.

When you have multiple files and you define a g lobal variable or function, which will be used in other files also,
then extern will be used in another file to g ive reference of defined variable or function. Just for understanding
extern is used to declare a g lobal variable or function in another file.

The extern modifier is most commonly used when there are two or more files sharing the same g lobal variables
or functions as explained below.

First File: main.cpp

#include <iostream>

int count ;
extern void write_extern();

main()
{
 count = 5;
 write_extern();
}

Second File: support.cpp

#include <iostream>

extern int count;

void write_extern(void)
{
 std::cout << "Count is " << count << std::endl;
}

Here, extern keyword is being used to declare count in another file. Now compile these two files as follows:

$g++ main.cpp support.cpp -o write

This will produce write executable prog ram, try to execute write and check the result as follows:

$./write
5

The mutable Storag e Class

The mutable specifier applies only to class objects, which are discussed later in this tutorial. It allows a member
of an object to override constness. That is, a mutable member can be modified by a const member function.

	STORAGE CLASSES IN C++
	The auto Storage Class
	The register Storage Class
	The static Storage Class
	The extern Storage Class
	The mutable Storage Class

