
http://www.tuto rialspo int.co m/cplusplus/cpp_quick_g uide.htm Copyrig ht © tutorialspoint.com

C++ QUICK GUIDE

C++ is a statically typed, compiled, g eneral-purpose, case-sensitive, free-form prog ramming lang uag e that
supports procedural, object-oriented, and g eneric prog ramming .

C++ is reg arded as a middle-level lang uag e, as it comprises a combination of both hig h-level and low-level
lang uag e features.

C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in Murray Hill, New Jersey, as an
enhancement to the C lang uag e and orig inally named C with Classes but later it was renamed C++ in 1983.

C++ is a superset of C, and that virtually any leg al C prog ram is a leg al C++ prog ram.

C++ Compiler:

This is actual C++ compiler, which will be used to compile your source code into final executable prog ram.

Most C++ compilers don't care what extension you g ive your source code, but if you don't specify otherwise,
many will use .cpp by default

Most frequently used and free available compiler is GNU C/C++ compiler, otherwise you can have compilers
either from HP or Solaris if you have respective Operating Systems.

C++ Prog ram Structure:

Let us look at a simple code that would print the words Hello World.

#include <iostream>
using namespace std;

// main() is where program execution begins.

int main()
{
 cout << "Hello World"; // prints Hello World
 return 0;
}

Comments in C++

C++ supports sing le line and multi-line comments. All characters available inside any comment are ig nored by
C++ compiler.

C++ comments start with /* and end with */. For example:

/* This is a comment */

/* C++ comments can also
 * span multiple lines
 */

A comment can also start with //, extending to the end of the line. For example:

#include <iostream>
using namespace std;

main()
{
 cout << "Hello World"; // prints Hello World

 return 0;
}

http://www.tutorialspoint.com/cplusplus/cpp_quick_guide.htm

C++ Primitive Built-in Types:

C++ offer the prog rammer a rich assortment of built-in as well as user-defined data types. Following table list
down seven basic C++ data types:

Type Keyword

Boolean bool

Character char

Integ er int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Variable Definition & Initialization in C++:

Some examples are:

extern int d, f // declaration of d and f
int d = 3, f = 5; // definition and initializing d and f.
byte z = 22; // definition and initializes z.
char x = 'x'; // the variable x has the value 'x'.

C++ Variable Scope:

A scope is a reg ion of the prog ram and broadly speaking there are three places where variables can be
declared:

Inside a function or a block which is called local variables,

In the definition of function parameters which is called formal parameters.

Outside of all functions which is called g lobal variables.

C++ Constants/Literals:

Constants refer to fixed values that the prog ram may not alter and they are called literals.

Constants can be of any of the basic data types and can be divided in Integ er Numerals, Floating -Point Numerals,
Characters, String s and Boolean Values.

Ag ain, constants are treated just like reg ular variables except that their values cannot be modified after their
definition.

C++ Modifier Types:

C++ allows the char, int, and double data types to have modifiers preceding them. A modifier is used to alter
the meaning of the base type so that it more precisely fits the needs of various situations.

The data type modifiers are listed here:

sig ned

unsig ned

long

short

The modifiers sig ned, unsig ned, long , and short can be applied to integ er base types. In addition, sig ned
and unsig ned can be applied to char, and long can be applied to double.

The modifiers sig ned and unsig ned can also be used as prefix to long or short modifiers. For example
unsig ned long int.

C++ allows a shorthand notation for declaring unsig ned, short, or long integ ers. You can simply use the
word unsig ned, short, or long , without the int. The int is implied. For example, the following two statements
both declare unsig ned integ er variables.

unsigned x;
unsigned int y;

Storag e Classes in C++:

A storag e class defines the scope (visibility) and life time of variables and/or functions within a C++ Prog ram.
These specifiers precede the type that they modify. There are following storag e classes which can be used in a
C++ Prog ram

auto

reg ister

static

extern

mutable

C++ Operators:

An operator is a symbol that tells the compiler to perform specific mathematical or log ical manipulations. C++ is
rich in built-in operators and provides following type of operators:

Arithmetic Operators (+, -, \, *, ++, --)

Relational Operators (==, !=, >. <, >=, <=)

Log ical Operators (&&, ||, !)

Bitwise Operators (& |, ^, ~, <<, >>)

Assig nment Operators (=, +=, -=, *=, /=, %=, <<=, >>=, &=, ^=, |=)

Misc Operators (sizeof, & cast, comma, conditional etc.)

C++ Loop Types:

C++ prog ramming lang uag e provides the following types of loops to handle looping requirements. Click the
following links to check their detail.

Loop Type Description

while loop Repeats a statement or g roup of statements while a g iven condition is true.
It tests the condition before executing the loop body.

for loop Execute a sequence of statements multiple times and abbreviates the code
that manag es the loop variable.

do...while loop Like a while statement, except that it tests the condition at the end of the loop
body

/cplusplus/cpp_while_loop.htm
/cplusplus/cpp_for_loop.htm
/cplusplus/cpp_do_while_loop.htm

nested loops You can use one or more loop inside any another while, for or do..while
loop.

C++ Decision Making :

C++ prog ramming lang uag e provides following types of decision making statements. Click the following links to
check their detail.

Statement Description

if statement An if statement consists of a boolean expression followed by one or
more statements.

if...else statement An if statement can be followed by an optional else statement, which
executes when the boolean expression is false.

switch statement A switch statement allows a variable to be tested for equality ag ainst a
list of values.

nested if statements You can use one if or else if statement inside another if or else if
statement(s).

nested switch statements You can use one swicth statement inside another switch statement(s).

C++ Functions:

The g eneral form of a C++ function definition is as follows:

return_type function_name(parameter list)
{
 body of the function
}

A C++ function definition consists of a function header and a function body. Here are all the parts of a function:

Return Type: A function may return a value. The return_type is the data type of the value the function
returns. Some functions perform the desired operations without returning a value. In this case, the
return_type is the keyword void.

Function Name: This is the actual name of the function. The function name and the parameter list
tog ether constitute the function sig nature.

Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value to the
parameter. This value is referred to as actual parameter or arg ument. The parameter list refers to the
type, order, and number of the parameters of a function. Parameters are optional; that is, a function may
contain no parameters.

Function Body: The function body contains a collection of statements that define what the function does.

Numbers in C++:

Following a simple example to show few of the mathematical operations on C++ numbers:

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{
 // number definition:
 short s = 10;

/cplusplus/cpp_nested_loops.htm
/cplusplus/cpp_if_statement.htm
/cplusplus/cpp_if_else_statement.htm
/cplusplus/cpp_switch_statement.htm
/cplusplus/cpp_nested_if.htm
/cplusplus/cpp_nested_swicth.htm

 int i = -1000;
 long l = 100000;
 float f = 230.47;
 double d = 200.374;

 // mathematical operations;
 cout << "sin(d) :" << sin(d) << endl;
 cout << "abs(i) :" << abs(i) << endl;
 cout << "floor(d) :" << floor(d) << endl;
 cout << "sqrt(f) :" << sqrt(f) << endl;
 cout << "pow(d, 2) :" << pow(d, 2) << endl;

 return 0;
}

C++ Arrays:

Following is an example, which will show array declaration, assig nment and accessing arrays in C++:

#include <iostream>
using namespace std;

#include <iomanip>
using std::setw;

int main ()
{
 int n[10]; // n is an array of 10 integers

 // initialize elements of array n to 0
 for (int i = 0; i < 10; i++)
 {
 n[i] = i + 100; // set element at location i to i + 100
 }
 cout << "Element" << setw(13) << "Value" << endl;

 // output each array element's value
 for (int j = 0; j < 10; j++)
 {
 cout << setw(7)<< j << setw(13) << n[j] << endl;
 }

 return 0;
}

C++ String s:

C++ provides following two types of string representations:

The C-style character string as follows:

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

The standard C++ library provides a string class type that supports all the operations mentioned above,
additionally much more functionality. Following is the example:

#include <iostream>
#include <string>

using namespace std;

int main ()
{
 string str1 = "Hello";
 string str2 = "World";
 string str3;

 // copy str1 into str3
 str3 = str1;

 cout << "str3 : " << str3 << endl;

 // concatenates str1 and str2
 str3 = str1 + str2;
 cout << "str1 + str2 : " << str3 << endl;

 return 0;
}

C++ Classes & Objects

A class definition starts with the keyword class followed by the class name; and the class body, enclosed by a
pair of curly braces. A class definition must be followed either by a semicolon or a list of declarations. For
example we defined the Box data type using the keyword class as follows:

class Box
{
 public:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

The keyword public determines the access attributes of the members of the class that follow it. A public
member can be accessed from outside the class anywhere within the scope of the class object. You can also
specify the members of a class as private or protected which we will discuss in a sub-section.

Define C++ Objects:

A class provides the blueprints for objects, so basically an object is created from a class. We declare objects of
a class with exactly the same sort of declaration that we declare variables of basic types. Following statements
declare two objects of class Box:

Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 will have their own copy of data members.

Accessing the Data Members:

The public data members of objects of a class can be accessed using the direct member access operator (.).
Let us try following example to make the thing s clear:

#include <iostream>

using namespace std;

class Box
{
 public:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

int main()
{
 Box Box1; // Declare Box1 of type Box
 Box Box2; // Declare Box2 of type Box
 double volume = 0.0; // Store the volume of a box here

 // box 1 specification
 Box1.height = 5.0;
 Box1.length = 6.0;
 Box1.breadth = 7.0;

 // box 2 specification

 Box2.height = 10.0;
 Box2.length = 12.0;
 Box2.breadth = 13.0;
 // volume of box 1
 volume = Box1.height * Box1.length * Box1.breadth;
 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2
 volume = Box2.height * Box2.length * Box2.breadth;
 cout << "Volume of Box2 : " << volume <<endl;
 return 0;
}

C++ Inheritance:

One of the most important concepts in object-oriented prog ramming is that of inheritance. Inheritance allows us
to define a class in terms of another class which makes it easier to create and maintain an application. This also
provides an opportunity to reuse the code functionality and fast implementation time.

When creating a class, instead of writing completely new data members and member functions, the prog rammer
can desig nate that the new class should inherit the members of an existing class. This existing class is called the
base class, and the new class is referred to as the derived class.

A class can be derived from more than one classes, which means it can inherit data and functions from multiple
base classes. To define a derived class, we use a class derivation list to specify the base class(es). A class
derivation list names one or more base classes and has the form:

class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the name of a previously
defined class. If the access-specifier is not used, then it is private by default.

Consider a base class Shape and its derived class Rectang le as follows:

#include <iostream>

using namespace std;

// Base class
class Shape
{
 public:
 void setWidth(int w)
 {
 width = w;
 }
 void setHeight(int h)
 {
 height = h;
 }
 protected:
 int width;
 int height;
};

// Derived class
class Rectangle: public Shape
{
 public:
 int getArea()
 {
 return (width * height);
 }
};

int main(void)
{
 Rectangle Rect;

 Rect.setWidth(5);
 Rect.setHeight(7);

 // Print the area of the object.
 cout << "Total area: " << Rect.getArea() << endl;

 return 0;
}

C++ Overloading

C++ allows you to specify more than one definition for a function name or an operator in the same scope,
which is called function overloading and operator overloading respectively.

Following is the example where same function print() is being used to print different data types:

#include <iostream>
using namespace std;

class printData
{
 public:
 void print(int i) {
 cout << "Printing int: " << i << endl;
 }

 void print(double f) {
 cout << "Printing float: " << f << endl;
 }

 void print(char* c) {
 cout << "Printing character: " << c << endl;
 }
};

int main(void)
{
 printData pd;

 // Call print to print integer
 pd.print(5);
 // Call print to print float
 pd.print(500.263);
 // Call print to print character
 pd.print("Hello C++");

 return 0;
}

Polymorphism in C++

C++ polymorphism means that a call to a member function will cause a different function to be executed
depending on the type of object that invokes the function.

Consider the following example where a base class has been derived by other two classes and area() method
has been implemented by the two sub-classes with different implementation.

#include <iostream>
using namespace std;

class Shape {
 protected:
 int width, height;
 public:
 Shape(int a=0, int b=0)
 {
 width = a;
 height = b;
 }

 int area()
 {
 cout << "Parent class area :" <<endl;
 return 0;
 }
};
class Rectangle: public Shape{
 public:
 Rectangle(int a=0, int b=0)
 {
 Shape(a, b);
 }
 int area ()
 {
 cout << "Rectangle class area :" <<endl;
 return (width * height);
 }
};
class Triangle: public Shape{
 public:
 Triangle(int a=0, int b=0)
 {
 Shape(a, b);
 }
 int area ()
 {
 cout << "Rectangle class area :" <<endl;
 return (width * height / 2);
 }
};
// Main function for the program
int main()
{
 Shape *shape;
 Rectangle rec(10,7);
 Triangle tri(10,5);

 // store the address of Rectangle
 shape = &rec;
 // call rectangle area.
 shape->area();

 // store the address of Triangle
 shape = &tri;
 // call triangle area.
 shape->area();

 return 0;
}

Data Abstraction in C++:

Data abstraction refers to, providing only essential information to the outside word and hiding their backg round
details ie. to represent the needed information in prog ram without presenting the details.

Data abstraction is a prog ramming (and desig n) technique that relies on the separation of interface and
implementation.

For example, in C++ we use classes to define our own abstract data types (ADT). You can use the cout object
of class ostream to stream data to standard output like this:

#include <iostream>
using namespace std;

int main()
{
 cout << "Hello C++" <<endl;
 return 0;
}

Here, you don't need to understand how cout displays the text on the user's screen. You need only know the
public interface and the underlying implementation of cout is free to chang e.

Data Encapsulation in C++:

All C++ prog rams are composed of following two fundamental elements:

Prog ram statements (code): This is the part of a prog ram that performs actions and they are called
functions.

Prog ram data: The data is the information of the prog ram which affected by the prog ram functions.

Encapsulation is an Object Oriented Prog ramming concept that binds tog ether the data and functions that
manipulate the data, and that keeps both safe from outside interference and misuse. Data encapsulation led to the
important OOP concept of data hiding .

C++ supports the properties of encapsulation and data hiding throug h the creation of user-defined types, called
classes. We already have studied that a class can contain private, protected and public members. By
default, all items defined in a class are private. For example:

class Box
{
 public:
 double getVolume(void)
 {
 return length * breadth * height;
 }
 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

C++ Files and Streams:

The iostream standard library cin and cout methods for reading from standard input and writing to standard
output respectively.

To read and write from a file requires another standard C++ library called fstream which defines three new
data types:

Data Type Description

ofstream This data type represents the output file stream and is used to create files
and to write information to files.

ifstream This data type represents the input file stream and is used to read
information from files.

fstream This data type represents the file stream g enerally, and has the capabilities
of both ofstream and ifstream which means it can create files, write
information to files, and read information from files.

Following is the C++ prog ram, which opens a file in reading and writing mode. After writing information inputted
by the user to a file named afile.dat, the prog ram reads information from the file and outputs it onto the screen:

#include <fstream>
#include <iostream>
using namespace std;

int main ()
{

 char data[100];

 // open a file in write mode.
 ofstream outfile;
 outfile.open("afile.dat");

 cout << "Writing to the file" << endl;
 cout << "Enter your name: ";
 cin.getline(data, 100);

 // write inputted data into the file.
 outfile << data << endl;

 cout << "Enter your age: ";
 cin >> data;
 cin.ignore();

 // again write inputted data into the file.
 outfile << data << endl;

 // close the opened file.
 outfile.close();

 // open a file in read mode.
 ifstream infile;
 infile.open("afile.dat");

 cout << "Reading from the file" << endl;
 infile >> data;

 // write the data at the screen.
 cout << data << endl;

 // again read the data from the file and display it.
 infile >> data;
 cout << data << endl;

 // close the opened file.
 infile.close();

 return 0;
}

	C++ QUICK GUIDE
	C++ Compiler:
	C++ Program Structure:
	Comments in C++
	C++ Primitive Built-in Types:
	Variable Definition & Initialization in C++:
	C++ Variable Scope:
	C++ Constants/Literals:
	C++ Modifier Types:
	Storage Classes in C++:
	C++ Operators:
	C++ Loop Types:
	C++ Decision Making:
	C++ Functions:
	Numbers in C++:
	C++ Arrays:
	C++ Strings:
	C++ Classes & Objects
	Define C++ Objects:
	Accessing the Data Members:
	C++ Inheritance:
	C++ Overloading
	Polymorphism in C++
	Data Abstraction in C++:
	Data Encapsulation in C++:
	C++ Files and Streams:

