POLYMORPHISM IN C++

The word polymorphism means having many forms. Typically, polymorphism occurs whenthere is a
hierarchy of classes and they are related by inheritance.

C++ polymorphism means that a call to a member function will cause a different function to be executed
depending onthe type of object that invokes the function.

Consider the following example where a base class has beenderived by other two classes:

#include <iostream>
using namespace std;

class Shape {
protected:
int width, height;
public:
Shape (int a=0, int b=0)
{

width = a;
height = b;
}
int area()
{
cout << "Parent class area :" <<endl;
return O;

bi
class Rectangle: public Shape({
public:
Rectangle (int a=0, int b=0)
{
Shape (a, b);
}
int area ()
{
cout << "Rectangle class area :" <<endl;
return (width * height);
}
i
class Triangle: public Shape({
public:
Triangle(int a=0, int b=0)
{
Shape (a, b);
}
int area ()
{
cout << "Rectangle class area :" <<endl;
return (width * height / 2);
}
bi
// Main function for the program
int main()
{
Shape *shape;
Rectangle rec(10,7);
Triangle tri(10,5);

// store the address of Rectangle
shape = é&rec;

// call rectangle area.
shape->areal() ;

// store the address of Triangle
shape = &tri;
// call triangle area.

http://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

shape->area () ;

return 0;

Whenthe above code is compiled and executed, it produces the following result:

Parent class area
Parent class area

The reasonfor the incorrect output is that the call of the function area() is being setonce by the compiler as the
versiondefined inthe base class. This is called static resolution of the function call, or static linkage - the
function callis fixed before the programis executed. This is also sometimes called early binding because the
area() functionis set during the compilation of the program.

But now, let's make a slig ht modification in our programand precede the declaration of area() in the Shape class
with the keyword virtual so that it looks like this:

class Shape {
protected:
int width, height;
public:
Shape (int a=0, int b=0)
{
width = a;
height = b;
}

virtual int area()

{
cout << "Parent class area :" <<endl;
return O;
}i

After this slight modification, when the previous example code is compiled and executed, it produces the
following result:

Rectangle class area
Triangle class area

This time, the compiler looks at the contents of the pointer instead ofit's type. Hence, since addresses of objects
oftriand rec classes are stored in *shape the respective area() functionis called.

As youcansee, eachof the child classes has a separate imple mentation for the function area(). This is how

polymorphismis generally used. You have different classes with a function of the same name, and even the
same parameters, but with different imple me ntations.

Virtual Function:

Avirtual functionis a functionina base class thatis declared using the keyword virtual. Defining ina base class
a virtual function, with another versionina derived class, signals to the compiler that we don't want static linkage
for this function.

What we do want is the selection of the functionto be called at any given point in the programto be based onthe
kind of object for whichitis called. This sort of operationis referred to as dynamic linkage, or late binding.

Pure Virtual Functions:

It's possible that you'd want to include a virtual functionina base class so that it may be redefined ina derived
class to suit the objects of that class, but that there is no meaning ful de finition you could give for the function in the
base class.

We can change the virtual function area() inthe base class to the following :

class Shape {

protected:
int width, height;
public:
Shape (int a=0, int b=0)
{
width = a;
height = b;
}
// pure virtual function
virtual int area() = 0;

}i

The = o tells the compiler that the function has no body and above virtual function will be called pure virtual
function.

	POLYMORPHISM IN C++
	Virtual Function:
	Pure Virtual Functions:

