
http://www.tuto rialspo int.co m/cplusplus/cpp_po inters.htm Copyrig ht © tutorialspoint.com

C++ POINTERS

C++ pointers are easy and fun to learn. Some C++ tasks are performed more easily with pointers, and other
C++ tasks, such as dynamic memory allocation, cannot be performed without them.

As you know every variable is a memory location and every memory location has its address defined which can
be accessed using ampersand (&) operator which denotes an address in memory. Consider the following which
will print the address of the variables defined:

#include <iostream>

using namespace std;

int main ()
{
 int var1;
 char var2[10];

 cout << "Address of var1 variable: ";
 cout << &var1 << endl;

 cout << "Address of var2 variable: ";
 cout << &var2 << endl;

 return 0;
}

When the above code is compiled and executed, it produces result something as follows:

Address of var1 variable: 0xbfebd5c0
Address of var2 variable: 0xbfebd5b6

What Are Pointers?

A pointer is a variable whose value is the address of another variable. Like any variable or constant, you must
declare a pointer before you can work with it. The g eneral form of a pointer variable declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid C++ type and var-name is the name of the pointer
variable. The asterisk you used to declare a pointer is the same asterisk that you use for multiplication. However,
in this statement the asterisk is being used to desig nate a variable as a pointer. Following are the valid pointer
declaration:

int *ip; // pointer to an integer
double *dp; // pointer to a double
float *fp; // pointer to a float
char *ch // pointer to character

The actual data type of the value of all pointers, whether integ er, float, character, or otherwise, is the same, a
long hexadecimal number that represents a memory address. The only difference between pointers of different
data types is the data type of the variable or constant that the pointer points to.

Using Pointers in C++:

There are few important operations, which we will do with the pointers very frequently. (a) we define a pointer
variables (b) assig n the address of a variable to a pointer and (c) finally access the value at the address
available in the pointer variable. This is done by using unary operator * that returns the value of the variable
located at the address specified by its operand. Following example makes use of these operations:

#include <iostream>

http://www.tutorialspoint.com/cplusplus/cpp_pointers.htm

using namespace std;

int main ()
{
 int var = 20; // actual variable declaration.
 int *ip; // pointer variable

 ip = &var; // store address of var in pointer variable

 cout << "Value of var variable: ";
 cout << var << endl;

 // print the address stored in ip pointer variable
 cout << "Address stored in ip variable: ";
 cout << ip << endl;

 // access the value at the address available in pointer
 cout << "Value of *ip variable: ";
 cout << *ip << endl;

 return 0;
}

When the above code is compiled and executed, it produces result something as follows:

Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20

C++ Pointers in Detail:

Pointers have many but easy concepts and they are very important to C++ prog ramming . There are following
few important pointer concepts which should be clear to a C++ prog rammer:

Concept Description

C++ Null Pointers C++ supports null pointer, which is a constant with a value of
zero defined in several standard libraries.

C++ pointer arithmetic There are four arithmetic operators that can be used on
pointers: ++, --, +, -

C++ pointers vs arrays There is a close relationship between pointers and arrays. Let
us check how?

C++ array of pointers You can define arrays to hold a number of pointers.

C++ pointer to pointer C++ allows you to have pointer on a pointer and so on.

Passing pointers to functions Passing an arg ument by reference or by address both enable
the passed arg ument to be chang ed in the calling function by the
called function.

Return pointer from functions C++ allows a function to return a pointer to local variable, static
variable and dynamically allocated memory as well.

/cplusplus/cpp_null_pointers.htm
/cplusplus/cpp_pointer_arithmatic.htm
/cplusplus/cpp_pointers_vs_arrays.htm
/cplusplus/cpp_array_of_pointers.htm
/cplusplus/cpp_pointer_to_pointer.htm
/cplusplus/cpp_passing_pointers_to_functions.htm
/cplusplus/cpp_return_pointer_from_functions.htm

	C++ POINTERS
	What Are Pointers?
	Using Pointers in C++:
	C++ Pointers in Detail:

