
http://www.tuto rialspo int.co m/cplusplus/cpp_o verlo ading .htm Copyrig ht © tutorialspoint.com

C++ OVERLOADING (OPERATOR AND FUNCTION)

C++ allows you to specify more than one definition for a function name or an operator in the same scope,
which is called function overloading and operator overloading respectively.

An overloaded declaration is a declaration that had been declared with the same name as a previously declared
declaration in the same scope, except that both declarations have different arg uments and obviously different
definition (implementation).

When you call an overloaded function or operator, the compiler determines the most appropriate definition
to use by comparing the arg ument types you used to call the function or operator with the parameter types
specified in the definitions. The process of selecting the most appropriate overloaded function or operator is
called overload resolution.

Function overloading in C++:

You can have multiple definitions for the same function name in the same scope. The definition of the function must
differ from each other by the types and/or the number of arg uments in the arg ument list. You can not overload
function declarations that differ only by return type.

Following is the example where same function print() is being used to print different data types:

#include <iostream>
using namespace std;

class printData
{
 public:
 void print(int i) {
 cout << "Printing int: " << i << endl;
 }

 void print(double f) {
 cout << "Printing float: " << f << endl;
 }

 void print(char* c) {
 cout << "Printing character: " << c << endl;
 }
};

int main(void)
{
 printData pd;

 // Call print to print integer
 pd.print(5);
 // Call print to print float
 pd.print(500.263);
 // Call print to print character
 pd.print("Hello C++");

 return 0;
}

When the above code is compiled and executed, it produces the following result:

Printing int: 5
Printing float: 500.263
Printing character: Hello C++

Operators overloading in C++:

You can redefine or overload most of the built-in operators available in C++. Thus a prog rammer can use

http://www.tutorialspoint.com/cplusplus/cpp_overloading.htm

operators with user-defined types as well.

Overloaded operators are functions with special names the keyword operator followed by the symbol for the
operator being defined. Like any other function, an overloaded operator has a return type and a parameter list.

Box operator+(const Box&);

declares the addition operator that can be used to add two Box objects and returns final Box object. Most
overloaded operators may be defined as ordinary non-member functions or as class member functions. In case
we define above function as non-member function of a class then we would have to pass two arg uments for each
operand as follows:

Box operator+(const Box&, const Box&);

Following is the example to show the concept of operator over loading using a member function. Here an object
is passed as an arg ument whose properties will be accessed using this object, the object which will call this
operator can be accessed using this operator as explained below:

#include <iostream>
using namespace std;

class Box
{
 public:

 double getVolume(void)
 {
 return length * breadth * height;
 }
 void setLength(double len)
 {
 length = len;
 }

 void setBreadth(double bre)
 {
 breadth = bre;
 }

 void setHeight(double hei)
 {
 height = hei;
 }
 // Overload + operator to add two Box objects.
 Box operator+(const Box& b)
 {
 Box box;
 box.length = this->length + b.length;
 box.breadth = this->breadth + b.breadth;
 box.height = this->height + b.height;
 return box;
 }
 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};
// Main function for the program
int main()
{
 Box Box1; // Declare Box1 of type Box
 Box Box2; // Declare Box2 of type Box
 Box Box3; // Declare Box3 of type Box
 double volume = 0.0; // Store the volume of a box here

 // box 1 specification
 Box1.setLength(6.0);
 Box1.setBreadth(7.0);
 Box1.setHeight(5.0);

 // box 2 specification
 Box2.setLength(12.0);
 Box2.setBreadth(13.0);
 Box2.setHeight(10.0);

 // volume of box 1
 volume = Box1.getVolume();
 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2
 volume = Box2.getVolume();
 cout << "Volume of Box2 : " << volume <<endl;

 // Add two object as follows:
 Box3 = Box1 + Box2;

 // volume of box 3
 volume = Box3.getVolume();
 cout << "Volume of Box3 : " << volume <<endl;

 return 0;
}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400

Overloadable/Non-overloadableOperators:

Following is the list of operators which can be overloaded:

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* new new [] delete delete []

Following is the list of operators, which can not be overloaded:

:: .* . ?:

Operator Overloading Examples:

Here are various operator overloading examples to help you in understanding the concept.

S.N. Operators and Example

1 Unary operators overloading

/cplusplus/unary_operators_overloading.htm

2 Binary operators overloading

3 Relational operators overloading

4 Input/Output operators overloading

5 ++ and -- operators overloading

6 Assig nment operators overloading

7 Function call () operator overloading

8 Subscripting [] operator overloading

9 Class member access operator -> overloading

/cplusplus/binary_operators_overloading.htm
/cplusplus/relational_operators_overloading.htm
/cplusplus/input_output_operators_overloading.htm
/cplusplus/increment_decrement_operators_overloading.htm
/cplusplus/assignment_operators_overloading.htm
/cplusplus/function_call_operator_overloading.htm
/cplusplus/subscripting_operator_overloading.htm
/cplusplus/class_member_access_operator_overloading.htm

	C++ OVERLOADING (OPERATOR AND FUNCTION)
	Function overloading in C++:
	Operators overloading in C++:
	Overloadable/Non-overloadableOperators:
	Operator Overloading Examples:

