
http://www.tuto rialspo int.co m/cplusplus/cpp_o perato rs.htm Copyrig ht © tutorialspoint.com

OPERATORS IN C++

An operator is a symbol that tells the compiler to perform specific mathematical or log ical manipulations. C++ is
rich in built-in operators and provides the following types of operators:

Arithmetic Operators

Relational Operators

Log ical Operators

Bitwise Operators

Assig nment Operators

Misc Operators

This chapter will examine the arithmetic, relational, log ical, bitwise, assig nment and other operators one by one.

Arithmetic Operators:

There are following arithmetic operators supported by C++ lang uag e:

Assume variable A holds 10 and variable B holds 20, then:

Show Examples

Operator Description Example

+ Adds two operands A + B will g ive 30

- Subtracts second operand from the first A - B will g ive -10

* Multiplies both operands A * B will g ive 200

/ Divides numerator by de-numerator B / A will g ive 2

% Modulus Operator and remainder of after an
integ er division

B % A will g ive 0

++ Increment operator, increases integ er value by
one

A++ will g ive 11

-- Decrement operator, decreases integ er value
by one

A-- will g ive 9

Relational Operators:

There are following relational operators supported by C++ lang uag e

Assume variable A holds 10 and variable B holds 20, then:

Show Examples

Operator Description Example

== Checks if the values of two operands are equal
or not, if yes then condition becomes true.

(A == B) is not true.

http://www.tutorialspoint.com/cplusplus/cpp_operators.htm
/cplusplus/cpp_arithmatic_operators.htm
/cplusplus/cpp_increment_decrement_operators.htm
/cplusplus/cpp_increment_decrement_operators.htm
/cplusplus/cpp_relational_operators.htm

!= Checks if the values of two operands are equal
or not, if values are not equal then condition
becomes true.

(A != B) is true.

> Checks if the value of left operand is g reater
than the value of rig ht operand, if yes then
condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than
the value of rig ht operand, if yes then condition
becomes true.

(A < B) is true.

>= Checks if the value of left operand is g reater
than or equal to the value of rig ht operand, if
yes then condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than
or equal to the value of rig ht operand, if yes
then condition becomes true.

(A <= B) is true.

Log ical Operators:

There are following log ical operators supported by C++ lang uag e

Assume variable A holds 1 and variable B holds 0, then:

Show Examples

Operator Description Example

&& Called Log ical AND operator. If both the
operands are non-zero, then condition
becomes true.

(A && B) is false.

|| Called Log ical OR Operator. If any of the two
operands is non-zero, then condition becomes
true.

(A || B) is true.

! Called Log ical NOT Operator. Use to
reverses the log ical state of its operand. If a
condition is true, then Log ical NOT operator
will make false.

!(A && B) is true.

Bitwise Operators:

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:

/cplusplus/cpp_logical_operators.htm

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C++ lang uag e are listed in the following table. Assume variable A holds 60
and variable B holds 13, then:

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result
if it exists in both operands.

(A & B) will g ive 12 which is 0000 1100

| Binary OR Operator copies a bit if it exists in
either operand.

(A | B) will g ive 61 which is 0011 1101

^ Binary XOR Operator copies the bit if it is set in
one operand but not both.

(A ^ B) will g ive 49 which is 0011 0001

~ Binary Ones Complement Operator is unary
and has the effect of 'flipping ' bits.

(~A) will g ive -61 which is 1100 0011 in 2's
complement form due to a sig ned binary
number.

<< Binary Left Shift Operator. The left operands
value is moved left by the number of bits
specified by the rig ht operand.

A << 2 will g ive 240 which is 1111 0000

>> Binary Rig ht Shift Operator. The left operands
value is moved rig ht by the number of bits
specified by the rig ht operand.

A >> 2 will g ive 15 which is 0000 1111

Assig nment Operators:

There are following assig nment operators supported by C++ lang uag e:

Show Examples

Operator Description Example

= Simple assig nment operator, Assig ns values
from rig ht side operands to left side operand

C = A + B will assig n value of A + B into C

+= Add AND assig nment operator, It adds rig ht
operand to the left operand and assig n the
result to left operand

C += A is equivalent to C = C + A

-= Subtract AND assig nment operator, It
subtracts rig ht operand from the left operand
and assig n the result to left operand

C -= A is equivalent to C = C - A

/cplusplus/cpp_bitwise_operators.htm
/cplusplus/cpp_assignment_operators.htm

*= Multiply AND assig nment operator, It multiplies
rig ht operand with the left operand and assig n
the result to left operand

C *= A is equivalent to C = C * A

/= Divide AND assig nment operator, It divides
left operand with the rig ht operand and assig n
the result to left operand

C /= A is equivalent to C = C / A

%= Modulus AND assig nment operator, It takes
modulus using two operands and assig n the
result to left operand

C %= A is equivalent to C = C % A

<<= Left shift AND assig nment operator C <<= 2 is same as C = C << 2

>>= Rig ht shift AND assig nment operator C >>= 2 is same as C = C >> 2

&= Bitwise AND assig nment operator C &= 2 is same as C = C & 2

^= bitwise exclusive OR and assig nment operator C ^= 2 is same as C = C ^ 2

|= bitwise inclusive OR and assig nment operator C |= 2 is same as C = C | 2

Misc Operators

There are few other operators supported by C++ Lang uag e.

Operator Description

sizeof sizeof operator returns the size of a variable. For example, sizeof(a),
where a is integ er, will return 4.

Condition ? X : Y Conditional operator. If Condition is true ? then it returns value X : otherwise
value Y

, Comma operator causes a sequence of operations to be performed. The
value of the entire comma expression is the value of the last expression of
the comma-separated list.

. (dot) and -> (arrow) Member operators are used to reference individual members of classes,
structures, and unions.

Cast Casting operators convert one data type to another. For example,
int(2.2000) would return 2.

& Pointer operator & returns the address of an variable. For example &a; will
g ive actual address of the variable.

* Pointer operator * is pointer to a variable. For example *var; will pointer to
a variable var.

Operators Precedence in C++:

Operator precedence determines the g rouping of terms in an expression. This affects how an expression is
evaluated. Certain operators have hig her precedence than others; for example, the multiplication operator has
hig her precedence than the addition operator:

For example x = 7 + 3 * 2; here, x is assig ned 13, not 20 because operator * has hig her precedence than +, so it
first g ets multiplied with 3*2 and then adds into 7.

Here, operators with the hig hest precedence appear at the top of the table, those with the lowest appear at the
bottom. Within an expression, hig her precedence operators will be evaluated first.

/cplusplus/cpp_sizeof_operator.htm
/cplusplus/cpp_conditional_operator.htm
/cplusplus/cpp_comma_operator.htm
/cplusplus/cpp_member_operators.htm
/cplusplus/cpp_casting_operators.htm
/cplusplus/cpp_pointer_operators.htm
/cplusplus/cpp_pointer_operators.htm

Show Examples

Categ ory Operator Associativity

Postfix () [] -> . ++ - - Left to rig ht

Unary + - ! ~ ++ - - (type)* & sizeof Rig ht to left

Multiplicative * / % Left to rig ht

Additive + - Left to rig ht

Shift << >> Left to rig ht

Relational < <= > >= Left to rig ht

Equality == != Left to rig ht

Bitwise AND & Left to rig ht

Bitwise XOR ^ Left to rig ht

Bitwise OR | Left to rig ht

Log ical AND && Left to rig ht

Log ical OR || Left to rig ht

Conditional ?: Rig ht to left

Assig nment = += -= *= /= %=>>= <<= &= ^= |= Rig ht to left

Comma , Left to rig ht

/cplusplus/cpp_operators_precedence.htm

	OPERATORS IN C++
	Arithmetic Operators:
	Relational Operators:
	Logical Operators:
	Bitwise Operators:
	Assignment Operators:
	Misc Operators
	Operators Precedence in C++:

