
http://www.tuto rialspo int.co m/cplusplus/cpp_multithreading .htm Copyrig ht © tutorialspoint.com

C++ MULTITHREADING

Multithreading is a specialized form of multitasking and a multitasking is the feature that allows your computer to
run two or more prog rams concurrently. In g eneral, there are two types of multitasking : process-based and
thread-based.

Process-based multitasking handles the concurrent execution of prog rams. Thread-based multitasking deals
with the concurrent execution of pieces of the same prog ram.

A multithreaded prog ram contains two or more parts that can run concurrently. Each part of such a prog ram is
called a thread, and each thread defines a separate path of execution.

C++ does not contain any built-in support for multithreaded applications. Instead, it relies entirely upon the
operating system to provide this feature.

This tutorial assumes that you are working on Linux OS and we are g oing to write multi-threaded C++ prog ram
using POSIX. POSIX Threads, or Pthreads provides API which are available on many Unix-like POSIX systems
such as FreeBSD, NetBSD, GNU/Linux, Mac OS X and Solaris.

Creating Threads:

There is following routine which we use to create a POSIX thread:

#include <pthread.h>
pthread_create (thread, attr, start_routine, arg)

Here, pthread_create creates a new thread and makes it executable. This routine can be called any number
of times from anywhere within your code. Here is the description of the parameters:

Parameter Description

thread An opaque, unique identifier for the new thread returned by the subroutine.

attr An opaque attribute object that may be used to set thread attributes. You can
specify a thread attributes object, or NULL for the default values.

start_routine The C++ routine that the thread will execute once it is created.

arg A sing le arg ument that may be passed to start_routine. It must be passed by
reference as a pointer cast of type void. NULL may be used if no arg ument is to
be passed.

The maximum number of threads that may be created by a process is implementation dependent. Once created,
threads are peers, and may create other threads. There is no implied hierarchy or dependency between
threads.

Terminating Threads:

There is following routine which we use to terminate a POSIX thread:

#include <pthread.h>
pthread_exit (status)

Here pthread_exit is used to explicitly exit a thread. Typically, the pthread_exit() routine is called after a
thread has completed its work and is no long er required to exist.

If main() finishes before the threads it has created, and exits with pthread_exit(), the other threads will continue to
execute. Otherwise, they will be automatically terminated when main() finishes.

http://www.tutorialspoint.com/cplusplus/cpp_multithreading.htm

Example:

This simple example code creates 5 threads with the pthread_create() routine. Each thread prints a "Hello
World!" messag e, and then terminates with a call to pthread_exit().

#include <iostream>
#include <cstdlib>
#include <pthread.h>

using namespace std;

#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
 long tid;
 tid = (long)threadid;
 cout << "Hello World! Thread ID, " << tid << endl;
 pthread_exit(NULL);
}

int main ()
{
 pthread_t threads[NUM_THREADS];
 int rc;
 int i;
 for(i=0; i < NUM_THREADS; i++){
 cout << "main() : creating thread, " << i << endl;
 rc = pthread_create(&threads[i], NULL,
 PrintHello, (void *)i);
 if (rc){
 cout << "Error:unable to create thread," << rc << endl;
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

Compile the following prog ram using -lpthread library as follows:

$gcc test.cpp -lpthread

Now, execute your prog ram which should g enerate result something as follows:

main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Hello World! Thread ID, 0
Hello World! Thread ID, 1
Hello World! Thread ID, 2
Hello World! Thread ID, 3
Hello World! Thread ID, 4

Passing Arg uments to Threads:

This example shows how to pass multiple arg uments via a structure. You can pass any data type in a thread
callback because it points to void as explained in the following example:

#include <iostream>
#include <cstdlib>
#include <pthread.h>

using namespace std;

#define NUM_THREADS 5

struct thread_data{
 int thread_id;
 char *message;
};

void *PrintHello(void *threadarg)
{
 struct thread_data *my_data;

 my_data = (struct thread_data *) threadarg;

 cout << "Thread ID : " << my_data->thread_id ;
 cout << " Message : " << my_data->message << endl;

 pthread_exit(NULL);
}

int main ()
{
 pthread_t threads[NUM_THREADS];
 struct thread_data td[NUM_THREADS];
 int rc;
 int i;

 for(i=0; i < NUM_THREADS; i++){
 cout <<"main() : creating thread, " << i << endl;
 td[i].thread_id = i;
 td[i].message = "This is message";
 rc = pthread_create(&threads[i], NULL,
 PrintHello, (void *)&td[i]);
 if (rc){
 cout << "Error:unable to create thread," << rc << endl;
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

When the above code is compiled and executed, it produces the following result:

main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Thread ID : 3 Message : This is message
Thread ID : 2 Message : This is message
Thread ID : 0 Message : This is message
Thread ID : 1 Message : This is message
Thread ID : 4 Message : This is message

Joining and Detaching Threads:

There are following two routines which we can use to join or detach threads:

pthread_join (threadid, status)
pthread_detach (threadid)

The pthread_join() subroutine blocks the calling thread until the specified threadid thread terminates. When a
thread is created, one of its attributes defines whether it is joinable or detached. Only threads that are created as
joinable can be joined. If a thread is created as detached, it can never be joined.

This example demonstrates how to wait for thread completions by using the Pthread join routine.

#include <iostream>
#include <cstdlib>
#include <pthread.h>
#include <unistd.h>

using namespace std;

#define NUM_THREADS 5

void *wait(void *t)
{
 int i;
 long tid;

 tid = (long)t;

 sleep(1);
 cout << "Sleeping in thread " << endl;
 cout << "Thread with id : " << tid << " ...exiting " << endl;
 pthread_exit(NULL);
}

int main ()
{
 int rc;
 int i;
 pthread_t threads[NUM_THREADS];
 pthread_attr_t attr;
 void *status;

 // Initialize and set thread joinable
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 for(i=0; i < NUM_THREADS; i++){
 cout << "main() : creating thread, " << i << endl;
 rc = pthread_create(&threads[i], NULL, wait, (void *)i);
 if (rc){
 cout << "Error:unable to create thread," << rc << endl;
 exit(-1);
 }
 }

 // free attribute and wait for the other threads
 pthread_attr_destroy(&attr);
 for(i=0; i < NUM_THREADS; i++){
 rc = pthread_join(threads[i], &status);
 if (rc){
 cout << "Error:unable to join," << rc << endl;
 exit(-1);
 }
 cout << "Main: completed thread id :" << i ;
 cout << " exiting with status :" << status << endl;
 }

 cout << "Main: program exiting." << endl;
 pthread_exit(NULL);
}

When the above code is compiled and executed, it produces the following result:

main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Sleeping in thread
Thread with id : 0 exiting
Sleeping in thread
Thread with id : 1 exiting
Sleeping in thread
Thread with id : 2 exiting
Sleeping in thread
Thread with id : 3 exiting
Sleeping in thread
Thread with id : 4 exiting
Main: completed thread id :0 exiting with status :0

Main: completed thread id :1 exiting with status :0
Main: completed thread id :2 exiting with status :0
Main: completed thread id :3 exiting with status :0
Main: completed thread id :4 exiting with status :0
Main: program exiting.

	C++ MULTITHREADING
	Creating Threads:
	Terminating Threads:
	Example:
	Passing Arguments to Threads:
	Joining and Detaching Threads:

