
http://www.tuto rialspo int.co m/cplusplus/cpp_interfaces.htm Copyrig ht © tutorialspoint.com

INTERFACES IN C++ (ABSTRACT CLASSES)

An interface describes the behavior or capabilities of a C++ class without committing to a particular
implementation of that class.

The C++ interfaces are implemented using abstract classes and these abstract classes should not be
confused with data abstraction which is a concept of keeping implementation details separate from associated
data.

A class is made abstract by declaring at least one of its functions as pure virtual function. A pure virtual function
is specified by placing "= 0" in its declaration as follows:

class Box
{
 public:
 // pure virtaul function
 virtual double getVolume() = 0;
 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

The purpose of an abstract class (often referred to as an ABC) is to provide an appropriate base class from
which other classes can inherit. Abstract classes cannot be used to instantiate objects and serves only as an
interface. Attempting to instantiate an object of an abstract class causes a compilation error.

Thus, if a subclass of an ABC needs to be instantiated, it has to implement each of the virtual functions, which
means that it supports the interface declared by the ABC. Failure to override a pure virtual function in a derived
class, then attempting to instantiate objects of that class, is a compilation error.

Classes that can be used to instantiate objects are called concrete classes.

Abstract Class Example:

Consider the following example where parent class provides an interface to the base class to implement a
function called g etArea():

#include <iostream>

using namespace std;

// Base class
class Shape
{
public:
 // pure virtual function providing interface framework.
 virtual int getArea() = 0;
 void setWidth(int w)
 {
 width = w;
 }
 void setHeight(int h)
 {
 height = h;
 }
protected:
 int width;
 int height;
};

// Derived classes
class Rectangle: public Shape
{
public:

http://www.tutorialspoint.com/cplusplus/cpp_interfaces.htm

 int getArea()
 {
 return (width * height);
 }
};
class Triangle: public Shape
{
public:
 int getArea()
 {
 return (width * height)/2;
 }
};

int main(void)
{
 Rectangle Rect;
 Triangle Tri;

 Rect.setWidth(5);
 Rect.setHeight(7);
 // Print the area of the object.
 cout << "Total Rectangle area: " << Rect.getArea() << endl;

 Tri.setWidth(5);
 Tri.setHeight(7);
 // Print the area of the object.
 cout << "Total Triangle area: " << Tri.getArea() << endl;

 return 0;
}

When the above code is compiled and executed, it produces the following result:

Total Rectangle area: 35
Total Triangle area: 17

You can see how an abstract class defined an interface in terms of g etArea() and two other classes implemented
same function but with different alg orithm to calculate the area specific to the shape.

Desig ning Strateg y:

An object-oriented system mig ht use an abstract base class to provide a common and standardized interface
appropriate for all the external applications. Then, throug h inheritance from that abstract base class, derived
classes are formed that all operate similarly.

The capabilities (i.e., the public functions) offered by the external applications are provided as pure virtual
functions in the abstract base class. The implementations of these pure virtual functions are provided in the
derived classes that correspond to the specific types of the application.

This architecture also allows new applications to be added to a system easily, even after the system has been
defined.

	INTERFACES IN C++ (ABSTRACT CLASSES)
	Abstract Class Example:
	Designing Strategy:

