
http://www.tuto rialspo int.co m/cplusplus/cpp_inheritance.htm Copyrig ht ©  tutorialspoint.com

C++ INHERITANCE

One of the most important concepts in object-oriented prog ramming  is that of inheritance. Inheritance allows us
to define a class in terms of another class, which makes it easier to create and maintain an application. This also
provides an opportunity to reuse the code functionality and fast implementation time.

When creating  a class, instead of writing  completely new data members and member functions, the prog rammer
can desig nate that the new class should inherit the members of an existing  class. This existing  class is called the
base  class, and the new class is referred to as the derived class.

The idea of inheritance implements the is a relationship. For example, mammal IS-A animal, dog  IS-A mammal
hence dog  IS-A animal as well and so on.

Base & Derived Classes:

A class can be derived from more than one classes, which means it can inherit data and functions from multiple
base classes. To define a derived class, we use a class derivation list to specify the base class(es). A class
derivation list names one or more base classes and has the form:

class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the name of a previously
defined class. If the access-specifier is not used, then it is private by default.

Consider a base class Shape  and its derived class Rectang le  as follows:

#include <iostream>
 
using namespace std;

// Base class
class Shape 
{
   public:
      void setWidth(int w)
      {
         width = w;
      }
      void setHeight(int h)
      {
         height = h;
      }
   protected:
      int width;
      int height;
};

// Derived class
class Rectangle: public Shape
{
   public:
      int getArea()
      { 
         return (width * height); 
      }
};

int main(void)
{
   Rectangle Rect;
 
   Rect.setWidth(5);
   Rect.setHeight(7);

   // Print the area of the object.

http://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm


   cout << "Total area: " << Rect.getArea() << endl;

   return 0;
}

When the above code is compiled and executed, it produces the following  result:

Total area: 35

Access Control and Inheritance:

A derived class can access all the non-private members of its base class. Thus base-class members that should
not be accessible to the member functions of derived classes should be declared private in the base class.

We can summarize the different access types according  to who can access them in the following  way:

Access public protected private

Same class yes yes yes

Derived classes yes yes no

Outside classes yes no no

A derived class inherits all base class methods with the following  exceptions:

Constructors, destructors and copy constructors of the base class.

Overloaded operators of the base class.

The friend functions of the base class.

Type of Inheritance:

When deriving  a class from a base class, the base class may be inherited throug h public, protected or
private  inheritance. The type of inheritance is specified by the access-specifier as explained above.

We hardly use protected or private  inheritance, but public  inheritance is commonly used. While using
different type of inheritance, following  rules are applied:

Public  Inheritance: When deriving  a class from a public  base class, public  members of the base
class become public  members of the derived class and protected members of the base class become
protected members of the derived class. A base class's private  members are never accessible
directly from a derived class, but can be accessed throug h calls to the public  and protected members
of the base class.

Protected Inheritance: When deriving  from a protected base class, public  and protected
members of the base class become protected members of the derived class.

Private Inheritance: When deriving  from a private  base class, public  and protected members of
the base class become private  members of the derived class.

Multiple Inheritances:

A C++ class can inherit members from more than one class and here is the extended syntax:

class derived-class: access baseA, access baseB....

Where access is one of public, protected, or private  and would be g iven for every base class and they will
be separated by comma as shown above. Let us try the following  example:

#include <iostream>



 
using namespace std;

// Base class Shape
class Shape 
{
   public:
      void setWidth(int w)
      {
         width = w;
      }
      void setHeight(int h)
      {
         height = h;
      }
   protected:
      int width;
      int height;
};

// Base class PaintCost
class PaintCost 
{
   public:
      int getCost(int area)
      {
         return area * 70;
      }
};

// Derived class
class Rectangle: public Shape, public PaintCost
{
   public:
      int getArea()
      { 
         return (width * height); 
      }
};

int main(void)
{
   Rectangle Rect;
   int area;
 
   Rect.setWidth(5);
   Rect.setHeight(7);

   area = Rect.getArea();
   
   // Print the area of the object.
   cout << "Total area: " << Rect.getArea() << endl;

   // Print the total cost of painting
   cout << "Total paint cost: $" << Rect.getCost(area) << endl;

   return 0;
}

When the above code is compiled and executed, it produces the following  result:

Total area: 35
Total paint cost: $2450


	C++ INHERITANCE
	Base & Derived Classes:
	Access Control and Inheritance:
	Type of Inheritance:
	Multiple Inheritances:


