
http://www.tuto rialspo int.co m/cplusplus/cpp_exceptio ns_handling .htm Copyrig ht © tutorialspoint.com

C++ EXCEPTION HANDLING

An exception is a problem that arises during the execution of a prog ram. A C++ exception is a response to an
exceptional circumstance that arises while a prog ram is running , such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a prog ram to another. C++ exception handling is
built upon three keywords: try, catch, and throw.

throw: A prog ram throws an exception when a problem shows up. This is done using a throw keyword.

catch: A prog ram catches an exception with an exception handler at the place in a prog ram where you
want to handle the problem. The catch keyword indicates the catching of an exception.

try: A try block identifies a block of code for which particular exceptions will be activated. It's followed by
one or more catch blocks.

Assuming a block will raise an exception, a method catches an exception using a combination of the try and
catch keywords. A try/catch block is placed around the code that mig ht g enerate an exception. Code within a
try/catch block is referred to as protected code, and the syntax for using try/catch looks like the following :

try
{
 // protected code
}catch(ExceptionName e1)
{
 // catch block
}catch(ExceptionName e2)
{
 // catch block
}catch(ExceptionName eN)
{
 // catch block
}

You can list down multiple catch statements to catch different type of exceptions in case your try block raises
more than one exception in different situations.

Throwing Exceptions:

Exceptions can be thrown anywhere within a code block using throw statements. The operand of the throw
statements determines a type for the exception and can be any expression and the type of the result of the
expression determines the type of exception thrown.

Following is an example of throwing an exception when dividing by zero condition occurs:

double division(int a, int b)
{
 if(b == 0)
 {
 throw "Division by zero condition!";
 }
 return (a/b);
}

Catching Exceptions:

The catch block following the try block catches any exception. You can specify what type of exception you want
to catch and this is determined by the exception declaration that appears in parentheses following the keyword
catch.

try
{
 // protected code

http://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm

}catch(ExceptionName e)
{
 // code to handle ExceptionName exception
}

Above code will catch an exception of ExceptionName type. If you want to specify that a catch block should
handle any type of exception that is thrown in a try block, you must put an ellipsis, ..., between the parentheses
enclosing the exception declaration as follows:

try
{
 // protected code
}catch(...)
{
 // code to handle any exception
}

The following is an example, which throws a division by zero exception and we catch it in catch block.

#include <iostream>
using namespace std;

double division(int a, int b)
{
 if(b == 0)
 {
 throw "Division by zero condition!";
 }
 return (a/b);
}

int main ()
{
 int x = 50;
 int y = 0;
 double z = 0;

 try {
 z = division(x, y);
 cout << z << endl;
 }catch (const char* msg) {
 cerr << msg << endl;
 }

 return 0;
}

Because we are raising an exception of type const char*, so while catching this exception, we have to use
const char* in catch block. If we compile and run above code, this would produce the following result:

Division by zero condition!

C++ Standard Exceptions:

C++ provides a list of standard exceptions defined in <exception> which we can use in our prog rams. These
are arrang ed in a parent-child class hierarchy shown below:

Here is the small description of each exception mentioned in the above hierarchy:

Exception Description

std::exception An exception and parent class of all the standard C++ exceptions.

std::bad_alloc This can be thrown by new.

std::bad_cast This can be thrown by dynamic_cast.

std::bad_exception This is useful device to handle unexpected exceptions in a C++ prog ram

std::bad_typeid This can be thrown by typeid.

std::log ic_error An exception that theoretically can be detected by reading the code.

std::domain_error This is an exception thrown when a mathematically invalid domain is used

std::invalid_arg ument This is thrown due to invalid arg uments.

std::leng th_error This is thrown when a too big std::string is created

std::out_of_rang e This can be thrown by the at method from for example a std::vector and
std::bitset<>::operator[]().

std::runtime_error An exception that theoretically can not be detected by reading the code.

std::overflow_error This is thrown if a mathematical overflow occurs.

std::rang e_error This is occured when you try to store a value which is out of rang e.

std::underflow_error This is thrown if a mathematical underflow occurs.

Define New Exceptions:

You can define your own exceptions by inheriting and overriding exception class functionality. Following is the
example, which shows how you can use std::exception class to implement your own exception in standard way:

#include <iostream>
#include <exception>
using namespace std;

struct MyException : public exception
{
 const char * what () const throw ()
 {
 return "C++ Exception";
 }
};

int main()
{
 try
 {
 throw MyException();
 }
 catch(MyException& e)
 {
 std::cout << "MyException caught" << std::endl;
 std::cout << e.what() << std::endl;
 }
 catch(std::exception& e)
 {
 //Other errors
 }
}

This would produce the following result:

MyException caught
C++ Exception

Here, what() is a public method provided by exception class and it has been overridden by all the child
exception classes. This returns the cause of an exception.

	C++ EXCEPTION HANDLING
	Throwing Exceptions:
	Catching Exceptions:
	C++ Standard Exceptions:
	Define New Exceptions:

