
http://www.tuto rialspo int.co m/cplusplus/cpp_data_encapsulatio n.htm Copyrig ht © tutorialspoint.com

DATA ENCAPSULATION IN C++

All C++ prog rams are composed of the following two fundamental elements:

Prog ram statements (code): This is the part of a prog ram that performs actions and they are called
functions.

Prog ram data: The data is the information of the prog ram which affected by the prog ram functions.

Encapsulation is an Object Oriented Prog ramming concept that binds tog ether the data and functions that
manipulate the data, and that keeps both safe from outside interference and misuse. Data encapsulation led to the
important OOP concept of data hiding .

Data encapsulation is a mechanism of bundling the data, and the functions that use them and data
abstraction is a mechanism of exposing only the interfaces and hiding the implementation details from the user.

C++ supports the properties of encapsulation and data hiding throug h the creation of user-defined types, called
classes. We already have studied that a class can contain private, protected and public members. By
default, all items defined in a class are private. For example:

class Box
{
 public:
 double getVolume(void)
 {
 return length * breadth * height;
 }
 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

The variables leng th, breadth, and heig ht are private. This means that they can be accessed only by other
members of the Box class, and not by any other part of your prog ram. This is one way encapsulation is achieved.

To make parts of a class public (i.e., accessible to other parts of your prog ram), you must declare them after
the public keyword. All variables or functions defined after the public specifier are accessible by all other
functions in your prog ram.

Making one class a friend of another exposes the implementation details and reduces encapsulation. The ideal is
to keep as many of the details of each class hidden from all other classes as possible.

Data Encapsulation Example:

Any C++ prog ram where you implement a class with public and private members is an example of data
encapsulation and data abstraction. Consider the following example:

#include <iostream>
using namespace std;

class Adder{
 public:
 // constructor
 Adder(int i = 0)
 {
 total = i;
 }
 // interface to outside world
 void addNum(int number)
 {
 total += number;
 }
 // interface to outside world

http://www.tutorialspoint.com/cplusplus/cpp_data_encapsulation.htm

 int getTotal()
 {
 return total;
 };
 private:
 // hidden data from outside world
 int total;
};
int main()
{
 Adder a;

 a.addNum(10);
 a.addNum(20);
 a.addNum(30);

 cout << "Total " << a.getTotal() <<endl;
 return 0;
}

When the above code is compiled and executed, it produces the following result:

Total 60

Above class adds numbers tog ether, and returns the sum. The public members addNum and g etTotal are the
interfaces to the outside world and a user needs to know them to use the class. The private member total is
something that is hidden from the outside world, but is needed for the class to operate properly.

Desig ning Strateg y:

Most of us have learned throug h bitter experience to make class members private by default unless we really
need to expose them. That's just g ood encapsulation.

This wisdom is applied most frequently to data members, but it applies equally to all members, including virtual
functions.

	DATA ENCAPSULATION IN C++
	Data Encapsulation Example:
	Designing Strategy:

