
http://www.tuto rialspo int.co m/cplusplus/cpp_co nstants_literals.htm Copyrig ht © tutorialspoint.com

C++ CONSTANTS/LITERALS

Constants refer to fixed values that the prog ram may not alter and they are called literals.

Constants can be of any of the basic data types and can be divided into Integ er Numerals, Floating -Point
Numerals, Characters, String s and Boolean Values.

Ag ain, constants are treated just like reg ular variables except that their values cannot be modified after their
definition.

Integ er literals:

An integ er literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base or radix: 0x or 0X
for hexadecimal, 0 for octal, and nothing for decimal.

An integ er literal can also have a suffix that is a combination of U and L, for unsig ned and long , respectively. The
suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integ er literals:

212 // Legal
215u // Legal
0xFeeL // Legal
078 // Illegal: 8 is not an octal digit
032UU // Illegal: cannot repeat a suffix

Following are other examples of various types of Integ er literals:

85 // decimal
0213 // octal
0x4b // hexadecimal
30 // int
30u // unsigned int
30l // long
30ul // unsigned long

Floating -point literals:

A floating -point literal has an integ er part, a decimal point, a fractional part, and an exponent part. You can
represent floating point literals either in decimal form or exponential form.

While representing using decimal form, you must include the decimal point, the exponent, or both and while
representing using exponential form, you must include the integ er part, the fractional part, or both. The sig ned
exponent is introduced by e or E.

Here are some examples of floating -point literals:

3.14159 // Legal
314159E-5L // Legal
510E // Illegal: incomplete exponent
210f // Illegal: no decimal or exponent
.e55 // Illegal: missing integer or fraction

Boolean literals:

There are two Boolean literals and they are part of standard C++ keywords:

A value of true representing true.

A value of false representing false.

You should not consider the value of true equal to 1 and value of false equal to 0.

http://www.tutorialspoint.com/cplusplus/cpp_constants_literals.htm

Character literals:

Character literals are enclosed in sing le quotes. If the literal beg ins with L (uppercase only), it is a wide character
literal (e.g ., L'x') and should be stored in wchar_t type of variable . Otherwise, it is a narrow character literal
(e.g ., 'x') and can be stored in a simple variable of char type.

A character literal can be a plain character (e.g ., 'x'), an escape sequence (e.g ., '\t'), or a universal character
(e.g ., '\u02C0').

There are certain characters in C++ when they are preceded by a backslash they will have special meaning and
they are used to represent like newline (\n) or tab (\t). Here, you have a list of some of such escape sequence
codes:

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriag e return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three dig its

\xhh . . . Hexadecimal number of one or more dig its

Following is the example to show few escape sequence characters:

#include <iostream>
using namespace std;

int main()
{
 cout << "Hello\tWorld\n\n";
 return 0;
}

When the above code is compiled and executed, it produces the following result:

Hello World

String literals:

String literals are enclosed in double quotes. A string contains characters that are similar to character literals:
plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separate them using whitespaces.

Here are some examples of string literals. All the three forms are identical string s.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

Defining Constants:

There are two simple ways in C++ to define constants:

Using #define preprocessor.

Using const keyword.

The #define Preprocessor:

Following is the form to use #define preprocessor to define a constant:

#define identifier value

Following example explains it in detail:

#include <iostream>
using namespace std;

#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'

int main()
{

 int area;

 area = LENGTH * WIDTH;
 cout << area;
 cout << NEWLINE;
 return 0;
}

When the above code is compiled and executed, it produces the following result:

50

The const Keyword:

You can use const prefix to declare constants with a specific type as follows:

const type variable = value;

Following example explains it in detail:

#include <iostream>
using namespace std;

int main()
{
 const int LENGTH = 10;
 const int WIDTH = 5;
 const char NEWLINE = '\n';
 int area;

 area = LENGTH * WIDTH;
 cout << area;
 cout << NEWLINE;
 return 0;
}

When the above code is compiled and executed, it produces the following result:

50

Note that it is a g ood prog ramming practice to define constants in CAPITALS.

	C++ CONSTANTS/LITERALS
	Integer literals:
	Floating-point literals:
	Boolean literals:
	Character literals:
	String literals:
	Defining Constants:
	The #define Preprocessor:
	The const Keyword:

