
http://www.tuto rialspo int.co m/cplusplus/cpp_arrays.htm Copyrig ht © tutorialspoint.com

C++ ARRAYS

C++ provides a data structure, the array, which stores a fixed-size sequential collection of elements of the
same type. An array is used to store a collection of data, but it is often more useful to think of an array as a
collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you declare one array
variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent individual
variables. A specific element in an array is accessed by an index.

All arrays consist of contig uous memory locations. The lowest address corresponds to the first element and the
hig hest address to the last element.

Declaring Arrays:

To declare an array in C++, the prog rammer specifies the type of the elements and the number of elements
required by an array as follows:

type arrayName [arraySize];

This is called a sing le-dimension array. The arraySize must be an integ er constant g reater than zero and type
can be any valid C++ data type. For example, to declare a 10-element array called balance of type double, use
this statement:

double balance[10];

Initializing Arrays:

You can initialize C++ array elements either one by one or using a sing le statement as follows:

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

The number of values between braces { } can not be larg er than the number of elements that we declare for the
array between square brackets []. Following is an example to assig n a sing le element of the array:

If you omit the size of the array, an array just big enoug h to hold the initialization is created. Therefore, if you
write:

double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};

You will create exactly the same array as you did in the previous example.

balance[4] = 50.0;

The above statement assig ns element number 5th in the array a value of 50.0. Array with 4th index will be 5th,
i.e., last element because all arrays have 0 as the index of their first element which is also called base index.
Following is the pictorial representaion of the same array we discussed above:

Accessing Array Elements:

An element is accessed by indexing the array name. This is done by placing the index of the element within
square brackets after the name of the array. For example:

http://www.tutorialspoint.com/cplusplus/cpp_arrays.htm

double salary = balance[9];

The above statement will take 10th element from the array and assig n the value to salary variable. Following is an
example, which will use all the above-mentioned three concepts viz. declaration, assig nment and accessing
arrays:

#include <iostream>
using namespace std;

#include <iomanip>
using std::setw;

int main ()
{
 int n[10]; // n is an array of 10 integers

 // initialize elements of array n to 0
 for (int i = 0; i < 10; i++)
 {
 n[i] = i + 100; // set element at location i to i + 100
 }
 cout << "Element" << setw(13) << "Value" << endl;

 // output each array element's value
 for (int j = 0; j < 10; j++)
 {
 cout << setw(7)<< j << setw(13) << n[j] << endl;
 }

 return 0;
}

This prog ram makes use of setw() function to format the output. When the above code is compiled and
executed, it produces the following result:

Element Value
 0 100
 1 101
 2 102
 3 103
 4 104
 5 105
 6 106
 7 107
 8 108
 9 109

C++ Arrays in Detail:

Arrays are important to C++ and should need lots of more detail. There are following few important concepts,
which should be clear to a C++ prog rammer:

Concept Description

Multi-dimensional arrays C++ supports multidimensional arrays. The simplest form of the
multidimensional array is the two-dimensional array.

Pointer to an array You can g enerate a pointer to the first element of an array by
simply specifying the array name, without any index.

Passing arrays to functions You can pass to the function a pointer to an array by specifying
the array's name without an index.

Return array from functions C++ allows a function to return an array.

/cplusplus/cpp_multi_dimensional_arrays.htm
/cplusplus/cpp_pointer_to_an_array.htm
/cplusplus/cpp_passing_arrays_to_functions.htm
/cplusplus/cpp_return_arrays_from_functions.htm

	C++ ARRAYS
	Declaring Arrays:
	Initializing Arrays:
	Accessing Array Elements:
	C++ Arrays in Detail:

