
PLAN AND DESIGN BUILD AND DEPLOY RUN AND TUNE

WEB ROLE
INSTANCES

LOAD BALANCER

CLIENTS

MESSAGING

WORKER ROLES
TYPE: X

AZURE SQL DATABASE TABLE STORAGE BLOB STORAGE

STORAGE

TYPE: Y TYPE: CACHE

WORKER ROLE WORKER ROLE WORKER ROLE

AUTOMATION: SCRIPT FOR SUCCESS

Maintaining a running, highly scaled application
involves repeating operations on a regular basis.
Concurrently develop a library of scripts that can
be run on multiple deployments when needed.
You can manage Azure services with the Service
Management API. Management libraries are
available for a variety of languages, including
Node.js, Java, and C#.

This phase contains the processes that refine the application, keep it running, and
enable scaling out (and in) as needed. Tuning your application takes time and requires
instrumentation and monitoring.

It’s a good practice to continually assess the metrics and balance against running costs.

A highly scalable application requires the use of specific patterns and practices.
Designing for optimal performance and scale-out is key. Use the patterns below to
help you architect your solution and continually refine your application.

Load test the system with both stress tests and by
simulating real-life usage. Vary the load size to
avoid surprises! Ensure that responsiveness meets
user requirements, and that the entire system is
resilient. Create load tests with Visual Studio that
check your system’s ability to meet the users’
needs. No need to set up virtual machines for load
testing, just run the tests with Visual Studio
Online.

LOAD TESTING: GETTING LOADED!

Applications that are built on Cloud Services are easily scaled. Web and worker
instances can be increased and decreased at will. Workloads can be distributed using
messaging, such as queues or Service Bus Topics.

Tables and blobs provide massive storage capacity and SQL Database supplies relational
capabilities. Other services such as caching can be easily integrated into a service.

CACHING

Caching improves performance by
storing recently used data for immediate reuse.
Application throughput and latency are typically
bound by how quickly data and context can be
retrieved, shared, and updated. Microsoft Azure
Cache provides caching as a service.

RETRY FOR FAULT TOLERANCE

Transient errors and throttling are unavoidable in
large-scale systems. Instead of simply failing the
operation, implement a robust retry strategy across
the application to provide resiliency against failures.
Too many retries too quickly can add additional
load, so also employ a “backoff” strategy that
allows the resource to recover by waiting after
multiple retries.

SCALE OUT WITH SCALE UNITS

Use more instances, not bigger hardware. Scale in
and out using scale units that are easily duplicated
and deployed. Scale units consist of a number of
role instances and their support services.

For example, a scale unit could be 3 web roles, 2
worker roles, 1 queue, and 2 SQL Database instances.

VS.

SAVING STATE

The durability of a web and worker role instance is
not assured, therefore its state (customer data,
stage in a workflow, etc.) must be saved externally.

Save state to durable storage (tables, SQL Database,
blobs), where other instances can resume the work.

FAN-OUT QUERIES

Database lookup logic is placed in a cloud service.
To find data, that cloud service determines the
databases to query. The query is then fanned out to
those databases.

HORIZONTAL PARTITIONING

As user data increases, the need for storage increas-
es. The database must be partitioned. This graphic
shows a horizontal partition (also known as a shard)
where intact tables are separated into
individual databases. Each user’s data can be
distributed to particular databases. You can create
and delete databases very quickly.

VERTICAL AFFINITY

When many users access data simultaneously, traffic
becomes a problem as scale increases. Design your
processes to access exclusive partitions to minimize
traffic and resource usage.

For example, assume databases are partitioned by
user. Ideally all operations that access a single user's
data are routed to a specific set of service instances.
Those instances access a single database partition
holding all the user's data.

CHUNKY, NOT CHATTY

Network calls require overhead for packet framing,
serialization, processing, and so on. Rather than use
"chatty" messages, batch them into fewer “chunky”
packages. Note, however, that batching can
increase latency and exposure to potential data loss.

DECOUPLED COMMUNICATIONS

Avoid tying up valuable resources by using an
asynchronous decoupled programming method.
Web role instances put autonomous messages into
a queue for pickup by worker role instances, which
continue the work. Throughput is controlled by the
number of role instances producing and processing
messages. Explore using Azure Service Bus or Stor-
age Queues.

Scaling Applications Using Microsoft Azure Cloud Services Like it? Get it.
http://gettag.mobi

© 2014 Microsoft Corporation. All rights reserved. Created by the Azure Poster Team Email: AzurePoster@microsoft.com

Plan & Design
Build & Deploy

Run & Tune

A key benefit of Azure is
creating highly scalable
applications using Cloud
Services.

Applications can shrink and
stretch to accommodate
changes in usage, removing
the need for expensive
on-premises hardware.

A key strategy is to design
in scale units, which are a
base configuration of web
and worker role instances
with supporting services
such as data stores and
caching.

Three reasons to create
Azure scalable
applications:

DEMAND PEAKS
Your app reaches thousands of users (or more)
although usage varies, sometimes greatly.

DISTRIBUTED USERS AND DEVICES
Your users are spread out, even around the
globe.

PARTITIONABLE WORKLOADS
Your processes are divided into optimal-size
loads of work, since cloud applications scale
by adding capacity in chunks.

Note: Not all of these need to be present in your
application, however, one that does not exhibit any of these
characteristics is probably not an ideal fit.

WEB
ROLE(S)

WORKER
ROLE(S)

STORAGE

SCALE: BIGGER, BETTER, FASTER
With visibility into the app, you can control scale
with more precision. To automate, a separate
process monitors the system's vital signs. When a
threshold is crossed a new scale unit is deployed.
When a lower threshold is crossed, a scale unit
can be removed.

Azure Web Sites lets you scale manually, or use its
Autoscaling feature to scale up or down as the
thresholds you set are crossed.

INTERNAL: Monitoring processes inside the
system is essential to determine when additional
scale-out is needed.

Strategically instrument the app to monitor potential
bottlenecks. There are two kinds of monitoring:

EXTERNAL: Monitor the performance from outside
the application to ensure service performance is
within acceptable ranges.

VISIBILITY & MONITORING

Microsoft Azure

Internal and external monitoring are available
through Application Insights. Azure Manage-
ment Services also enables you to create rules and
alerts for monitoring.

