ECE 3822: Homework No. 4	Page 2 of 2
ECE 3822: Engineering Computation II
Homework No. 4: More Shell Programming
Goal: The goal of this homework is to demonstrate how to do some basic shell coding. Later, we will revisit this using C++ and Python.
Description: In the directory:
/data/courses/ece_3822/current/music
[bookmark: _GoBack]there is a directory named songs that contains 100 mp3 files. Your overall task is to write a program that randomly shuffles the songs and “plays” them. The requirements of this shuffle program are:
1. You must guarantee that all 100 songs will be played once before you start playing a song a second time. Similarly, all songs must be played twice before you continue to the third pass.
2. Your program automatically progresses from one song to the next (use a loop). It must play forever.
3. Before a song is played, you must log it as played, so if you kill the script during playing of this song, it will restart from the next song that must be played (not a song that has been previously played).
4. The program must keep track of its status so that you can restart the program. If I kill your script in the middle of playing a song, it should resume from where it left off. You don’t have to start the song that was currently playing, but you must randomly select the next most available song.
5. When all songs have been played once and you start the next pass, the order must be randomized (you can’t use the same order for every pass).
6. It must be coded in shell (Bourne shell, not bash). Do not use bash extensions.
7. It must run from a terminal window as a Linux command (e.g., my_player.sh). A GUI is not required.
8. You must demonstrate you can launch the command in the background and then kill the job with a kill command (as demonstrated in class). Describe what happens when you kill the shellscript – be very specific in how you explain what is happening.
Finally, try to minimize memory (don’t load all 100 songs into memory) and run-time (you want this running in the background with a low priority).
The script should be called myplay.sh (e.g., “myplay.sh $HOME/songs”) and take a directory path as its argument. The first thing it should do is search that directory and its subdirectories for files that end in “.mp3” and build a list of these files. These are the files you need to play. Note you can use the find command in shell to easily do this.
The output that I want to see is this (taken from my personal version of this script):
58 (52, 1): playing file tosca_-_rolf_royce_feat_stephen_graf_hadik_wildner.mp3
59 (157, 1): playing file zero_7_-_i_have_seen.mp3
60 (51, 1): playing file air_-_la_femme_d_argent.mp3
61 (16, 1): playing file ms_mr_-_hurricane.mp3
62 (60, 1): playing file variety_labs_-_london_in_the_rain.mp3
63 (49, 1): playing file koop_-_waltz_for_koop.mp3
64 (77, 1): playing file emancipator_-_when_i_go.mp3
65 (130, 1): playing file saint_germaine_-_land_of.mp3
The first number is the index of the song being played. The second number is the position of the file in the original list of files (this is list is randomly shuffled after all the songs have been played once). The third number is the number of times the song has been played. All songs will be played once before it plays a song for the second time.
Note that when I kill the script, and run it again, it will not play any of the songs that have been previously played once. When it plays songs, it never plays the same song twice until all songs have been played the same number of times.
Since you will be coding this on a server, instead of actually playing the songs, you can use a dummy command like “sleep” and sleep for three seconds. That will allow you to simulate playing the song. If you have a Mac or Linux desktop, you might try implementing this locally using your favorite set of songs.
Submit a pdf document that demonstrates all of the above features, including the ability to stop and restart the script. Your pdf filename should be lastname_firstname_hw04.pdf.

ECE 3822: Engineering Computation II	Spring 2019
ECE 3822: Engineering Computation II	Spring 2019
