

Extra Credit Assignment

Efficiency of Python Code

Submitted to:

Professor Joseph Picone

ECE 3822: Software Tools for Engineers

Temple University

College of Engineering

1947 North 12th Street

Philadelphia, Pennsylvania 19122

April 5, 2018

Prepared by:

Abdulrahman Almusaileem

Email: tug46204@temple.edu

Jermy Joy

Email: tug02925@temple.edu

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

mailto:tug46204@temple.edu
mailto:tug02925@temple.edu

A. Almusaileem: E.C.

J. Joy: E.C. Page 1 of 8

ECE 3822: Software Tools for Engineers Spring 2018

A. DESCRIPTION

In this assignment we can measure the CPU and memory efficiency of different Python scripts. The Python

scripts objective was to determine the number of duplicate elements in an array. We have a total of six

different scripts which complete the same task but have a different approach. Shown below are the different

scripts which are tested.

def first_trail(numbers):

 #print "in first_trail..."

 d = {}

 for val in numbers:

 d[val] = d.get(val, 0) + 1

 return sum(d[i] > 1 for i in d)

def second_trail(numbers):

 #print "in second_trail..."

 dupVals = []

 for i in range(0, len(numbers)):

 for j in range(i+1, len(numbers)):

 if numbers[j] == numbers[i] and

numbers[j] not in dupVals:

 dupVals.append(numbers[j])

 return len(dupVals)

def third_trail(numbers):

 #print "in third_trail..."

 temp = []

 foo = 0

 numberz = set(numbers)

 for num in numberz:

 temp.append(numbers.count(num))

 for num in temp:

 if num > 1:

 foo += 1

 return foo

def forth_trail(numbers):

 #print "in forth_trail..."

 x=[]

 for n in set(numbers):

 count = numbers.count(n)

 if count > 1:

 x.append(n)

 return (len(x))

A. Almusaileem: E.C.

J. Joy: E.C. Page 2 of 8

ECE 3822: Software Tools for Engineers Spring 2018

In order to produce meaningful data points, we vary the data size, one hundred to one million by powers of

ten, and execute the code a total of ten times and compute the average time of the total trials. The time was

computed by saving the time prior to execution and then saving the time after execution of the script was

complete. The initial time was then subtracted from the final time and the resulting value was the time

which was spent executing the script.

Each script was saved into a single python script and was saved as six different functions which can be

called using a command line argument. For example, the first example code was called by entering the

command below. The results then yield the averages of the ten trials for the five different data sizes.

Using data sizes larger than 100,000 caused the execution times to be large. We executed the code on the

Neuronix cluster and in the background and used the “nohup” command to ensure the script was compiling

even after logging off. The results were then saved to a text file which can be read after the code is executed

to completion.

The main frame of this code consisted of four nested ‘for’ loops. Shown below is an example flowchart for

the process. The first loop executed the whole experiment a total of ten times. The second loop selected a

data size from a corresponding array with the desired data sizes as elements. The third loop ensured there

was a different data set for the function to execute ten times, timed the execution of the other function, and

saved the time results to an array. The final loop was used for the random number generator ranging from

0 to the data size divided by four, this was done to ensure there are a fair number of repeats in the data set.

The exact code which was used can be found in the appendix section of the report.

def fifth_trail(numbers):

 counter = 0

 if len(numbers) < 2:

 return counter

 else:

 numbers.sort()

 dup = 0

 for i in range(1,len(numbers)):

 if ((numbers[i-1] == numbers[i]) &

(dup == 0)):

 counter = counter + 1

 dup = 1

 elif numbers[i-1] != numbers[i]:

 dup = 0

 return counter

def sixth_trail(numbers):

 #print "in sixth_trail..."

 allDupes = [x for x in numbers if

numbers.count(x) >= 2]

 uniqueDupes = list(set(allDupes))

 numberOfDupes = len(uniqueDupes)

 return numberOfDupes

nedc_000_[1]: nohup python extra.py first_trail >> first.txt &

A. Almusaileem: E.C.

J. Joy: E.C. Page 3 of 8

ECE 3822: Software Tools for Engineers Spring 2018

A. Almusaileem: E.C.

J. Joy: E.C. Page 4 of 8

ECE 3822: Software Tools for Engineers Spring 2018

B. RESULTS

With the use of MATLAB, we graphed the plots and it shows that function two initially had an efficient

start for small data sizes, representing the steep incline at the start, and then the slope drastically decreases

representing a great increase in time around the 150,000 to 200,000 random number data size mark.

Furthermore, on the second subplot there represents the results of the memory data points. There was a

slight reduction of memory using function code but the other functions all represented around the same

amount of memory. As an employer, function 1 is the better choice when selecting a script even though it

shows a slight increase in the memory sector because of the increased speed of execution. Below is an excel

data sheet representing the results data size vs time.

Size 100 (S) 1000 (S) 10000 (S) 100000 (S) 1000000 (S)

Function 1 5.03E-05 0.0003307271004 0.006919734478 0.08501665831 0.9209700084

Function 2 0.000549530983 0.05136265755 5.491262841 5.71E+02 5.71E+04

Function 3 0.01472270489 0.1345752239 1.93723731 90.91240913 9.11E+02

Function 4 0.01178379059 0.1107995987 1.68309114 91.40230715 9.15E+02

Function 5 5.72E-05 0.0005646133423 0.01623624802 0.1983497071 2.712822492

Function 6 0.01450824738 0.1467009783 3.706346703 2.00E+02 2.00E+03

A. Almusaileem: E.C.

J. Joy: E.C. Page 5 of 8

ECE 3822: Software Tools for Engineers Spring 2018

Size 100 (MB) 1000 (MB) 10000 (MB) 100000 (MB) 1000000 (MB)

Function 1 38.153125 38.28515625 39.04648437 47.82617188 116.8179688

Function 2 38.25554688 38.27488281 39.13054688 46.13592052 118.2918474

Function 3 38.25554688 38.26726563 38.96257813 46.38714844 115.2918383

Function 4 38.25457031 38.25066406 38.95769531 46.38851563 114.2918375

Function 5 38.25457031 38.25457031 38.83660156 44.40304688 100.3442578

Function 6 38.25984375 38.26765625 44.40304688 44.40304688 112.1948272

Above is a representation of the memory vs the data size on a spread sheet. As the size of the data increases,

the value of the data size, measured in megabytes, increases.

C. SUMMARY

After completing this assignment, we as a group concluded that of these six codes, the first was the most

efficient considering executing speeds for all sizes of the data provided. The second most efficient code

was the fifth case. Function two, was ONLY efficient for small data sets. The second code executed faster

than the third, fourth, and sixth codes for the data sizes varying from (100,1000) numbers. This code is only

good for the quiz, where the random numbers are apart of only a small set. After increasing the data size to

10,000+, the time for execution for the second code increased drastically, deeming to be the most inefficient

of the six codes for larger data sets. The third most efficient code provided, considering all data sets, was

the third code. The fourth most efficient function provided was the fourth, the fifth most efficient was the

third and finally, the least efficient code which was executed was the second.

Memory wise, these functions do not vary drastically amongst each other as the size increases. As the size

increases the memory also increases. Each of the functions take up about the same amount of memory when

executing the code for the different data sizes.

When analyzing the code for the second code, there are two nested ‘for’ loops and an if statement within

those loops. This takes a much longer time to execute, especially when the script is expected to index

through an array which is roughly one million elements long. Furthermore, the first code implements the

use of a dictionary which can index much faster considering it does not index through each element

necessarily. The dictionary method quickly executes since there is no comparing every individual element

within the stored data.

In conclusion, when coding in python, coding efficiently is what creates a separation between expert coders

and amateur coders, this assignment being an example. These six codes all accomplished the same goal but

timing wise, as the data set became larger, the code began to take an exponentially longer time.

A. Almusaileem: E.C.

J. Joy: E.C. Page 6 of 8

ECE 3822: Software Tools for Engineers Spring 2018

D. APPENDIX

/usr/bin/env python

import os

import sys

import random

from timeit import default_timer as time

import numpy as np

from memory_profiler import profile, memory_usage

def first_trail(numbers): # first function

 d = {}

 for val in numbers:

 d[val] = d.get(val, 0) + 1

 return sum(d[i] > 1 for i in d)

def second_trail(numbers): # second function

 dupVals = []

 for i in range(0, len(numbers)):

 for j in range(i+1, len(numbers)):

 if numbers[j] == numbers[i] and numbers[j] not in dupVals:

 dupVals.append(numbers[j])

 return len(dupVals)

def third_trail(numbers): # third function

 temp = []

 foo = 0

 numberz = set(numbers)

 for num in numberz:

 temp.append(numbers.count(num))

 for num in temp:

 if num > 1:

 foo += 1

 return foo

def forth_trail(numbers): # fourth function

 x=[]

 for n in set(numbers):

 count = numbers.count(n)

 if count > 1:

 x.append(n)

 return (len(x))

def fifth_trail(numbers): # fifth function

 counter = 0

 if len(numbers) < 2:

 return counter

 else:

 numbers.sort()

 dup = 0

 for i in range(1,len(numbers)):

 if ((numbers[i-1] == numbers[i]) & (dup == 0)):

 counter = counter + 1

 dup = 1

 elif numbers[i-1] != numbers[i]:

 dup = 0

 return counter

def sixth_trail(numbers): # sixth function

 allDupes = [x for x in numbers if numbers.count(x) >= 2]

 uniqueDupes = list(set(allDupes))

 numberOfDupes = len(uniqueDupes)

 return numberOfDupes

A. Almusaileem: E.C.

J. Joy: E.C. Page 7 of 8

ECE 3822: Software Tools for Engineers Spring 2018

Below is the code which was used on MATLAB to plot the results

def main(argv): # main code

 code_dict ={ # dictionary for calling the functions based on the input arg

 "first_trail" : first_trail, # first code

 "second_trail" : second_trail, # second code

 "third_trail": third_trail, # third code

 "forth_trail" : forth_trail, # forth code

 "fifth_trail" : fifth_trail, # fifth code

 "sixth_trail" : sixth_trail # sixth code

 }

 all_avr = [] # array for storing the final results

 data = [100, 1000, 10000, 100000, 1000000] # The data sizes for the tests

 for trail in range(0,10): # Loop for the ten tests

 tmp_avr = [] # array for storing the average of the average times

 for data_size in data: # for loop collecting the data size from the array

 avr = [] # array for storing the average of the times

 for test in range(0,10): # for loop for 10trials

 rand_data = [] # array for storing the random data

 for index in range(0,data_size): # create (data_size) random numbers

 rand_data.append(random.randint(0,data_size/4)) # Generate random numbers

 print len(rand_data) # printing the data size

 print("Timer turned on!") # Showing timer turned on

 ti = time() # Get the time of the start of execution

 code_dict[argv[1]](rand_data) # dictionary for the function call

 tf = time() # Get the time of the end of execution

pid = os.getpid() # memory function

 mem_usage = memory_usage(pid) # memory

 mem.append(mem_usage) # memory usage

 print("Timer turned off!") # Showing timer turned off

 inner_t = tf - ti # Expression for the time of execution

 avr.append(inner_t) # saving the time to an array

 tmp_avr.append(np.mean(avr)) # save the average of the ten trial values to array

 mem_avr.append(np.mean(mem))# array for storing the average memory value

 print "tmp {}".format(tmp_avr)

 print len(tmp_avr) # print the length of the time array

 all_avr.append(np.mean(tmp_avr)) # save the results of the average to an array

 print "\nall {}".format(all_avr) # print the results

 print len(all_avr) # print length of the answer array

if __name__ == "__main__":

 main(sys.argv)

A. Almusaileem: E.C.

J. Joy: E.C. Page 8 of 8

ECE 3822: Software Tools for Engineers Spring 2018

 clc;

clear;

% Software tools extra credit efficiency plots

%% given the average of the times from the python code

% Time result vectors

% 100, 1000, 10000, 100000, 1000000

time_first_code = [5.03063201904e-

05,0.000330727100372,0.006919734478,0.0850166583061,0.920970008373]; % All data collected

time_second_code = [0.00054953098297119143, 0.051362657546997072,

5.4912628412246702,5.712591812224671e+02,5.712804126347671e+04]; % All data collected

time_third_code = [0.014722704887390137, 0.1345752239227295,

1.9372373104095459,90.912409129142745,9.112475566145275e+02]; % All data collected

time_fourth_code = [0.011783790588378907, 0.11079959869384766,

1.6830911397933961,91.402307152748122,9.151470526574811e+02]; % All data collected

time_fifth_code = [5.72299957275e-

05,0.000564613342285,0.0162362480164,0.198349707127,2.71282249212]; % All data collected

time_sixth_code = [0.014508247375488281, 0.14670097827911377,

3.7063467025756838,1.997105785822868e+02,1.998979512256610e+03]; % All data collected

% Memory result vectors

mem_first_code = [38.153125000000003, 38.28515625, 39.046484374999999, 47.826171875,

116.81796875000001]; % All data collected

mem_second_code =

[38.255546875,38.2748828125,39.130546875,46.1359205203,118.291847362718]; % all data

collected

mem_third_code = [38.255546875,38.267265625,38.962578125,46.3871484375,115.2918382759]; %

all data collected

mem_fourth_code = [38.2545703125,38.2506640625,38.9576953125,46.388515625,114.2918374628];

% all data collected

mem_fifth_code = [38.2545703125,38.2545703125,38.8366015625,44.403046875,100.344257813]; %

All data collected

mem_sixth_code = [38.25984375,38.26765625,39.045,44.403046875,112.1948271938]; % all data

collected

% Data Set Size

Data_size_5 = [100,1000,10000,100000,1000000];

figure(1);

clf;

subplot(2,1,1)

plot(time_first_code,Data_size_5,time_second_code,Data_size_5,time_third_code,Data_size_5,

time_fourth_code,Data_size_5,time_fifth_code,Data_size_5,time_sixth_code,Data_size_5)

title('Data Size vs Time of Execution');

xlabel('Time (s)')

ylabel('Data Size')

legend('Function 1','Function 2','Function 3','Function 4','Function 5','Function 6')

subplot(2,1,2)

plot(mem_first_code,Data_size_5,mem_second_code,Data_size_5,mem_third_code,Data_size_5,mem

_fourth_code,Data_size_5,mem_fifth_code,Data_size_5,mem_sixth_code,Data_size_5)

title('Memory Usage vs Time of Execution');

xlabel('Memory Usage(MB)');

ylabel('Data Size');

legend('Function 1','Function 2','Function 3','Function 4','Function 5','Function 6')

