

 Python Efficiency
submitted to:

Professor Joseph Picone

ECE 3822: Software Tools for Engineers

Temple University

College of Engineering

1947 North 12th Street

Philadelphia, Pennsylvania 19122

April 6, 2018

prepared by:

Von Kaukeano, Chad Martin

Email: tuh42003@temple.edu, tug96858@temple.edu

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

mailto:tuh42003@temple.edu,%20tug96858@temple.edu

C. Martin & V. Kaukeano Python Efficiency Page 1 of 13

ECE 3822: Software Tools for Engineers Spring 2018

Table of Contents

Summary .. 2

Introduction.. 3

Procedure ... 4
1.1. Figures ... 4

Analysis ... 8

Conclusion ... 12

Table of Figures

Figure 1. Algorithm 1 .. 4

Figure 3. Algorithm 3 .. 4

Figure 3. Algorithm 3 .. 4

Figure 4. Algorithm 4 .. 4

Figure 5. Algorithm 5 .. 5

Figure 6. Algorithm 6 .. 5

Figure 7. Algorithm Memory Response versus Amount of Random Numbers Sorted 8

Figure 11. Algorithm Time Response versus Amount of Random Numbers Sorted 10

Table of Tables

Table 1. Scripts for Timing and Memory Calculations ... 7

Table 1. Algorithm Memory Usage ... 8

Table 2. Algorithm CPU Time .. 10

Table 3. Complexity .. 11

C. Martin & V. Kaukeano Python Efficiency Page 2 of 13

ECE 3822: Software Tools for Engineers Spring 2018

SUMMARY

In this assignment, we examine six different python algorithms. These algorithms each produce a

total count of how many total integers occur more than once. For benchmarking we increasing

the total number of integers by a factor of ten, while also increasing the range of numbers by a

factor of ten for scaling purposes. Each of the six cases are designed differently yet acquire the

exact same output. After adding python’s memory_profile library, we used its tools to compare

each algorithm by the amount of memory each uses. After, we used the timer function from the

standard python library to approximate the amount of time it takes to complete each algorithm.

The time plotted was the average of time of ten runs per algorithm, this was repeated for each

input size. Algorithm #1 is the most efficient solution because as we increased the input size it

remained the fastest to count duplicates, while also using approximately the same or less

memory as the other algorithms.

C. Martin & V. Kaukeano Python Efficiency Page 3 of 13

ECE 3822: Software Tools for Engineers Spring 2018

INTRODUCTION

This assignment begins with the six-different algorithms and learning how to use various python

library tools to profile the algorithms. We used two libraries for profiling these algorithms. The

first being a standard library, and the second being a non-standard called memory_profile. The

memory_profiling library must be downloaded. You can download this library by following this

hyperlink to memory_profiler. This tool gives a line by line memory usage that is sampled at a

specified interval, the default used for this project was a tenth of a second. Each algorithm is

executed ten times for each input size and then averaged. To preserve the data that would be

output to the screen, it was appended to a text file that was specific to that algorithm and its input

size. For the approximate run time, we used a timer function in python’s library, then repeated

the process of appending it to a text file specific to that algorithm and input size.

https://pypi.python.org/pypi/memory_profiler

C. Martin & V. Kaukeano Python Efficiency Page 4 of 13

ECE 3822: Software Tools for Engineers Spring 2018

PROCEDURE

def FindDuplicates(numbers):

 d = {}

 for val in numbers:

 d[val] = d.get(val, 0) + 1

 return sum(d[i] > 1 for i in d)
Figure 1. Algorithm Using Get Function and Dictionary

def FindDuplicates(numbers):

 dupVals = []

 for i in range(0, len(numbers)):

 for j in range(i+1, len(numbers)):

 if numbers[j] == numbers[i] and numbers[j] not in dupVals:

 dupVals.append(numbers[j])

 return len(dupVals)
Figure 2. Algorithm 2

def FindDuplicates(numbers):

 temp = []

 foo = 0

 numberz = set(numbers)

 for num in numberz:

 temp.append(numbers.count(num))

 for num in temp:

 if num > 1:

 foo += 1

 return foo
Figure 3. Algorithm 3

def FindDuplicates(numbers):

 x=[]

 for n in set(numbers):

 count = numbers.count(n)

 if count > 1:

 x.append(n)

 return (len(x))
Figure 4. Algorithm 4

C. Martin & V. Kaukeano Python Efficiency Page 5 of 13

ECE 3822: Software Tools for Engineers Spring 2018

Script to Approximate Run Time Script to Approximate Memory

#!/usr/bin/env python

import random

from timeit import default_timer as timer

def FindDuplicates1(numbers):

 d = {}

 for val in numbers:

 d[val] = d.get(val, 0) + 1

 return sum(d[i] > 1 for i in d)

def FindDuplicates2(numbers):

 dupVals = []

 for i in range(0, len(numbers)):

 for j in range(i+1, len(numbers)):

 if numbers[j] == numbers[i] and

numbers[j] not in dupVals:

 dupVals.append(numbers[j])

 return len(dupVals)

def FindDuplicates3(numbers):

#!/usr/bin/env python

import random

import cProfile

from memory_profiler import profile

@profile

def FindDuplicates1(numbers):

 d = {}

 for val in numbers:

 d[val] = d.get(val, 0) + 1

 return sum(d[i] > 1 for i in d)

@profile

def FindDuplicates2(numbers):

 dupVals = []

 for i in range(0, len(numbers)):

 for j in range(i+1,

len(numbers)):

def FindDuplicates(numbers):

 counter = 0

 if len(numbers) < 2:

 return counter

 else:

 numbers.sort()

 dup = 0

 for i in range(1,len(numbers)):

 if ((numbers[i-1] == numbers[i]) & (dup == 0)):

 counter = counter + 1

 dup = 1

 elif numbers[i-1] != numbers[i]:

 dup = 0

 return counter
Figure 5. Algorithm 5

def FindDuplicates(numbers):

 allDupes = [x for x in numbers if numbers.count(x) >= 2]

 uniqueDupes = list(set(allDupes))

 numberOfDupes = len(uniqueDupes)

 return numberOfDupes
Figure 6. Algorithm 6

C. Martin & V. Kaukeano Python Efficiency Page 6 of 13

ECE 3822: Software Tools for Engineers Spring 2018

 temp = []

 foo = 0

 numberz = set(numbers)

 for num in numberz:

 temp.append(numbers.count(num))

 for num in temp:

 if num > 1:

 foo += 1

 return foo

def FindDuplicates4(numbers):

 x=[]

 for n in set(numbers):

 count = numbers.count(n)

 if count > 1:

 x.append(n)

 return (len(x))

def FindDuplicates5(numbers):

 counter = 0

 if len(numbers) < 2:

 return counter

 else:

 numbers.sort()

 dup = 0

 for i in range(1,len(numbers)):

 if ((numbers[i-1] == numbers[i]) &

(dup == 0)):

 counter = counter + 1

 dup = 1

 elif numbers[i-1] != numbers[i]:

 dup = 0

 # exit function and return number of unique

duplicates

 #

 return counter

def FindDuplicates6(numbers):

 allDupes = [x for x in numbers if

numbers.count(x) >= 2]

 uniqueDupes = list(set(allDupes))

 numberOfDupes = len(uniqueDupes)

 return numberOfDupes

begin gracefully

 if numbers[j] ==

numbers[i] and numbers[j] not in dupVals:

dupVals.append(numbers[j])

 return len(dupVals)

@profile

def FindDuplicates3(numbers):

 temp = []

 foo = 0

 numberz = set(numbers)

 for num in numberz:

 temp.append(numbers.count(num))

 for num in temp:

 if num > 1:

 foo += 1

 return foo

@profile

def FindDuplicates4(numbers):

 x=[]

 for n in set(numbers):

 count = numbers.count(n)

 if count > 1:

 x.append(n)

 return (len(x))

@profile

def FindDuplicates5(numbers):

 counter = 0

 if len(numbers) < 2:

 return counter

 else:

 numbers.sort()

 dup = 0

 for i in range(1,len(numbers)):

 if ((numbers[i-1] ==

numbers[i]) & (dup == 0)):

 counter =

counter + 1

 dup = 1

 elif numbers[i-1] !=

numbers[i]:

 dup = 0

C. Martin & V. Kaukeano Python Efficiency Page 7 of 13

ECE 3822: Software Tools for Engineers Spring 2018

if __name__ == "__main__":

 numbers = []

#chage the value inside of range for each run

 for i in range(100):

 value = random.randint(1, 4) #change

the random int range for each run by a

decimal place

 numbers.append(value)

 start = timer()

 FindDuplicates1(numbers)

 end = timer()

 print "FindDuplicates1", (end - start)

 start = timer()

 FindDuplicates2(numbers)

 end = timer()

 print "FindDuplicates2", (end - start)

 start = timer()

 FindDuplicates3(numbers)

 end = timer()

 print "FindDuplicates3", (end - start)

 start = timer()

 FindDuplicates4(numbers)

 end = timer()

 print "FindDuplicates4", (end - start)

 start = timer()

 FindDuplicates5(numbers)

 end = timer()

 print "FindDuplicates5", (end - start)

 start = timer()

 FindDuplicates6(numbers)

 end = timer()

 print "FindDuplicates6", (end - start)

 # exit function and return number of

unique duplicates

 #

 return counter

@profile

def FindDuplicates6(numbers):

 allDupes = [x for x in numbers if

numbers.count(x) >= 2]

 uniqueDupes = list(set(allDupes))

 numberOfDupes = len(uniqueDupes)

 return numberOfDupes

begin gracefully

if __name__ == "__main__":

 numbers = []

 for i in range(100):

 value = random.randint(1, 4)

 numbers.append(value)

 FindDuplicates1(numbers)

 FindDuplicates2(numbers)

 FindDuplicates3(numbers)

 FindDuplicates4(numbers)

 FindDuplicates5(numbers)

 FindDuplicates6(numbers)

end of file

Table 1. Scripts for Timing and Memory Calculations

C. Martin & V. Kaukeano Python Efficiency Page 8 of 13

ECE 3822: Software Tools for Engineers Spring 2018

ANALYSIS

Algorithm Memory Usage in MiB

Size: 10^2 10^3 10^4 10^5 10^6

Algorithm:

1 10.35 10.38 10.95 16.54 76.33

2 10.30 10.44 - - -

3 10.30 10.37 10.71 16.55 75.50

4 10.36 10.40 10.75 16.37 -

5 10.43 10.43 10.76 17.19 -

6 10.36 10.41 10.78 17.33 -

Table 2. Algorithm Memory Usage

As you can see from Table 2 above, the memory usage for each algorithm remains roughly the

same. For this reason, we have plotted the average memory usage between the Algorithms.

Because of the very small difference in these algorithms if they were to all be plotted together it

would be six lines close to on top of each other. Another very noteworthy thing to take from this

data is that there is no correlation speed and memory usage. Normally he expectation would be

that the faster you go, the more memory you consume. This is not the case for our project. If you

refer to the table, you will see that the fastest algorithm number one remained in the median for

memory consumption. Out profiling method for memory gave a output in the exact format

shown in Figure 8 on the next page. It is our interpretation of this report that the reason that all

the algorithms have approximately the same amount of memory because none of them allocate

memory, they simply manipulate existing data.

Figure 7. Algorithm Memory Response versus Amount of Random Numbers Sorted

C. Martin & V. Kaukeano Python Efficiency Page 9 of 13

ECE 3822: Software Tools for Engineers Spring 2018

Filename: solution1.py

Line # Mem usage Increment Line Contents

==

 7 10.1 MiB 10.1 MiB @profile

 8 def FindDuplicates(numbers):

 9

 10 10.1 MiB 0.0 MiB d = {}

 11 10.1 MiB 0.0 MiB for val in numbers:

 12 10.1 MiB 0.0 MiB d[val] = d.get(val, 0) + 1

 13 10.1 MiB 0.0 MiB return sum(d[i] > 1 for i in d)

mprof: Sampling memory every 0.1s

Figure 8. Memory Analysis for a Single Run

C. Martin & V. Kaukeano Python Efficiency Page 10 of 13

ECE 3822: Software Tools for Engineers Spring 2018

Algorithm CPU Time in Seconds

Size: 10^2 10^3 10^4 10^5 10^6

Algorithm:

1 .0000188 .000144 0.00154 0.0196 0.243
2 .0003310 .027500 2.71000 304.0000 38200.000
3 .0000113 .000748 0.07350 7.7400 814.000
4 .0000092 .000744 0.07340 7.7500 807.000
5 .0000272 .000313 0.00368 0.0520 0.646

6 .0001400 .015900 2.74000 181.0000 42900.000
Table 3. Algorithm CPU Time

The data to support the claim that Algorithm number on is the most efficient is shown above. By

analyzing the values shown in Table 2 we have concluded that the

Algorithms have the Complexity shown in Table 3. This was based on the understanding that the

more functions that are preformed, the longer the script takes to complete. By inspection it is

obvious that algorithm 1 only increases in run time by an approximate power of as we increase

the input size. This leads us to believe that the complexity is a O(log(n)). Although the fifth

algorithm is a touch slower than the first, it also follows this trend making it the same

complexity. Given the exponential increase in run time of the third and fourth algorithm, we

believe those to be at a minimum O(n^2). As we approach the least efficient algorithms we see

that they have a greater exponential trend in increased run time while also sharing a trend. This

would make them at least an O(2^n) complexity and possibly even an O(n!). Our results are

summarized in Table 4. A sample of what the output of the runtime approximation script is

shown on the next page in Figure 8.

Figure 9. Algorithm Time Response versus Amount of Random Numbers Sorted

C. Martin & V. Kaukeano Python Efficiency Page 11 of 13

ECE 3822: Software Tools for Engineers Spring 2018

Algorithm Complexity

1 O(log(n))

2 O(2^n)

3 O(n^2)

4 O(n^2)

5 O(log(n))

6 O(2^n)

Table 4. Complexity

Working our way backwards in the algorithms to better understand why one algorithm is more

efficient than another we use a function to report back the number of function calls. We noticed

that this does in fact have a direct correlation to runtime. The number of function calls grew

exponentially in the second and sixth algorithms. The second one grows like this because of the

use of nested for loops. Python is like MATLAB in the sense that For loops make the script very

slow. Although this method may be more intuitive to most it is shown to be very inefficient. The

sixth seems to be inefficient because it is nesting functions inside of functions. The third

algorithm is also using a series of nested for loops but much more efficiently, this is the reason

for it ranking slower than one but faster than two. Although four uses one less iteration we can

see that the it is still less efficient. This is probably due to the indexing over the array to count

each element. The two fastest algorithms use iterations but limit the function calls, we believe

this to be the defining factor that makes them more efficient than the other methods.

FindDuplicates1 0.000152111053467

FindDuplicates2 0.0268650054932

FindDuplicates3 0.000741004943848

FindDuplicates4 0.000731945037842

FindDuplicates5 0.000306844711304

FindDuplicates6 0.0156071186066

Figure 10. Time Analysis for a Single Run

C. Martin & V. Kaukeano Python Efficiency Page 12 of 13

ECE 3822: Software Tools for Engineers Spring 2018

CONCLUSION

There may be some volatility in our data from the fact that we used a personal computer to

perform the runs for memory and the Neuronix cluster to perform the time trials. We were not

able to run the less efficient algorithms on the personal computer due to the time required to

complete the run, we deemed these runs impractical. From the trend shown from Error!

Reference source not found. we estimated the memory usage to be the same or very close to the

other algorithms.

	Summary
	Introduction
	Procedure
	Analysis
	Conclusion

