M. Vendetti-Houser: HW # 01	Page 4 of 2
[bookmark: _Ref49482707]DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Exam Rework No. 01:
Exam 01 Rework
submitted to:
Professor Joseph Picone
ECE 3822: Software Tools for Engineers
Temple University
College of Engineering
1947 North 12th Street
Philadelphia, Pennsylvania 19122

September 25, 15
prepared by:
Miles A. Vendetti-Houser
Email: tud31843@temple.edu

[bookmark: _Ref49478891]Problem
[bookmark: _Ref49480580]The purpose of this document is to demonstrate the ability to accurately complete the problems on the first exam. Also, to gain 50 more points on top of my grade.
Approach
For the first problem it was necessary to find all the sessions that occurred in the year 2007 between May 1 and May 30, and count the number of text files for which the word “spike” and the word “sustained” occur at least once.
In order to complete the task, we need to look at the name of all of the directories inside the text database ‘data_v00’ containing information from May 1st to May 30th. Only then we will proceed to search the text files inside these directories. I tried using regular expressions in which will look for the expression ‘*_200705[01-30]’, but this also displayed results for the 31st of May. So, after many failures with the regular expression syntax using the find utility, I finally decided to just have it search for directories from the 1st to the 29th or the 30th. This produced accurate results after creating a test directory containing a date from the 30th (because the original database did not contain any from the 30th).
Next, I took the results from this find command and piped it to a grep command which searched recursively through the directories into the text files for instances of spike AND sustained. The output of this displayed duplicates from some odd reason so I then proceeded to pipe its output to ‘sort’ and ‘uniq –d’ which sorted and deleted duplicate lines. I ended up having 3 files in the end of the problem which matched the task requirements. All images are shown in the results section, along with all code used.
For the second task, we were asked to generate a list of filenames whose full pathname contains the name “John”. Then, we were to write a shellscript that loops over the list and counts the number of characters in the file. The shellscript was obligated to also output each filename being processed along with the character count in each file and the rolling sum of both the characters counted and total files processed.
To complete this, I first created the list file called john.list using the following command ‘file . –type f | grep –I ‘john’ > john.list’. This command found all the files and piped the output to grep, where grep searched through for instances of ‘john’ ignoring case. Then I created a shellscript file whose input was the john.list and iterated through all of the lines. During each iteration, the number of lines were counted using ‘wc –c’ and echoed to the screen. Also, I took a rolling sum of the files processed and total character count. Thankfully, this was rather simple using the ‘while read line’ construct already provided by sh. The results section displays the results of this task along with the commands and shell script generated.
For the third and final task, I created a shell script in which I actually impressed myself with. I didn’t feel content just writing a script that would simply create the environmental variable and have it work even after a logout. I wanted more. So, I brushed up on some information such as the order of precedence for Linux user profile files and created the script shown in the results section below called ‘set_OS_PROC.sh’. Here is the rundown of my methodology.
1. Define variables used
2. Check for .bash_profile, .bash.login, or .bashrc
3. Iterate through the contents the found target to see if my script was previously ran.
4. If it has been run. Do not append the export commands
5. Else append the export commands and exit!

In other words, my script covers a bunch of cases. It automatically sets the user profile file to the one being used by the user and it also avoids appending duplicates to the user settings file.
Results
[image:]
[image:]
[image:]
[image:]

PROBLEM 1
find . -type d -path '*_200705[1-29]*' -o -path '*_20070530' | xargs grep -ERil 'spike.*sustained|sustained.*spike' | sort | uniq -d
PROBLEM 2
#! /bin/sh

input_file=$1

char_count=0
total_char=0
filename=""
total_files_processed=0

while read line
do	
	filename="$line"
	echo "Currently reading $filename."
	char_count=$(wc -c $line | cut -f1 -d' ')
	echo "Number of characters in file: $char_count "
	total_char=$(($total_char + $char_count))
	echo "The rolling sum is $total_char"
	total_files_processed=$(($total_files_processed + 1))
	echo "Total files processed: $total_files_processed"
done < $input_file

PROBLEM 3
#! /bin/sh
Author: audihurrr

MY_OS=`uname -o`
MY_PROC=`uname -p`
OUTPUT_FILE=""
os_flag=0
proc_flag=0

Checks for the user profile file (all are common across linux)
if [-e ~/.bash_profile]; then
	OUTPUT_FILE=~/.bash_profile
elif [-e ~/.bash.login]; then
	OUTPUT_FILE=~/.bash.login
else
	OUTPUT_FILE=~/.bashrc
fi

Let's play it safe and make sure that this script wasn't ran before
We would know this if the existing user profile file contains the
export lines
while read line
do
	if ["$line" = "export MY_OS=$MY_OS"] ; then
		echo "Found pre-existing declaration for MY_OS..."
		os_flag=1	
	fi

	if ["$line" = "export MY_PROC=$MY_PROC"] ; then
		echo "Found pre-existing declaration for MY_PROC..."
		proc_flag=1	
	fi
		
done < $OUTPUT_FILE

If we found those lines lets just exit, else append the desired lines to the output file
and export for current running shell!
if [$os_flag -eq 1 -a $proc_flag -eq 1]; then
	echo "\nLooks like $OUTPUT_FILE already contains the necessary 	information."
else
	echo "Appending MY_OS and MY_PROC to $OUTPUT_FILE..."
	echo "export MY_OS=$MY_OS" >> $OUTPUT_FILE
	echo "export MY_PROC=$MY_PROC" >> $OUTPUT_FILE
	#export for current running shell
	export MY_OS MY_PROC
fi

echo "\nDone!\n"

Analysis
I should done better at Googling during the exam. However, lesson learned I still gained a good amount of familiarity with shellscripting and using different options with find and grep. All very similar to the homeworks! I hope my resulting script for problem 3 works for you too!

[bookmark: _GoBack]

ECE 3822: Software Tools for Engineers	September 25, 15
image4.PNG
Appending MY_0S and MY_PROC to /home/audihurrr/.bashrc...

3
Done!

image1.PNG
© ™ audihurrr@ubuntu: ~/Desktop/data_voo

audihurrr@ubuntu:~/Desktop/data_vees find . -type d -path '*_200705[1-29]*' -o -path '*_
20070530 | xargs grep -ERil 'spike.*sustained|sustained.*spike' | sort | uniq -d
./book_18/00008089_20070521/Joleen_Diseth/eg_ee.txt
./book_18/00008089_20070521/Kalmus_Chi/eg_e@.txt
./book_18/00008089_20070521/Malson_Wilmer /eg_0@.txt

audihurrr@ubuntu:~/Desktop/data_vees |

image2.PNG
SN
©© @ audihurrr@ubuntu: ~/Desktop

Number of characters in file: 1320

The rolling sum is 946208

Total files processed: 639

Currently reading ./data_voe/book_69/00001069_20070107/Fandel_Johnie/eg_00. txt.
Number of characters in file: 2045

The rolling sum is 948253

Total files processed: 640

Currently reading ./data_voe/book_69/00001416_20041017/Fan_Johnathan/eg_01. txt.
Number of characters in file: 1320

iThe rolling sum is 949573

Total files processed: 641

Currently reading ./data_voe/book_69/00001416_20041017/Fan_Johnathan/eg_00. txt.
Number of characters in file: 1411

The rolling sum is 950984

Total files processed: 642

Currently reading ./data_voe/book_69/00001645_20070211/Rabjohn_Mirella/eg_61.txt.
Number of characters in file: 1308

The rolling sum is 952292

Total files processed: 643

Currently reading ./data_vee/book_69/00001645_20070211/Rabjohn_Mirella/eg_60.txt.
Number of characters in file: 1274

The rolling sum is 953566

Total files processed: 644

audihurrreubuntu:~/Desktops
VESELOUBY

image3.PNG
audihurrr@ubuntu:~/Desktop$ sh set_0S_PROC.sh
Found pre-existing declaration for MY_0S
Found pre-existing declaration for MY_PROC...

Looks Like /home/audihurrr/.bashrc already contains the necessary information.

Done!

