J. Smith: HW # XX	Page 4 of 10
[bookmark: _Ref49482707]DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Exam 1 Rework:
Linux Command Line Basics
submitted to:
Professor Joseph Picone
ECE 3822: Software Tools for Engineers
Temple University
College of Engineering
1947 North 12th Street
Philadelphia, Pennsylvania 19122

September 26, 2015
prepared by:
Pat Somaru
Email: tuf18542@temple.edu

[bookmark: _Ref49478891]Problem
[bookmark: _Ref49480580]This exam consisted of three problems. As feedback on the original solutions has been received, it seems appropriate to address the differences between the original and reworked solutions. The formatting of this paper has been altered to best accommodate that.
 Problem No.1: Database Searching
The provided database was to be searched, case insensitively, for all sessions that both occurred between the First and Thirtieth of May, 2007 and contained the words spike and sustained.
 Problem No.2: Database Searching and Shell Scripting
A list of all the pathnames relative to the root of the database containing the name “John” was to be generated. A shell script was to be written to process this list through loops. Each loop was to output the name and character count of the file at the pathname on the line of the list being processed. Once this process has been completed for all files on the list, the script is then to output a count of the number of files counted and the number of characters counted.
 Problem No.3: Environmental Variables
A script modifying the .bashrc was to be written. This script was to set two environmental variables. The first, “MY_OS”, was to be set to the specific version of the operating system of the computer running the script. The second, “MY_PROC”, was to be set to the model name of the processor of the computer running the script. This script was to be compatible with any Linux system.
Approach
Problem No.1: Database Searching
Original
A bash script was written to perform this task. This script was written to use grep to search through the contents of all the files in the database and pipe the filenames and contents of files containing both the words spike and sustained to another instance of grep, separating each file by a newline. The second instance of grep was to pipe the pathnames and contents of all the sessions occurring within May of 2007 to cat, maintaining the newline separations inserted by the first grep. Cat was then to prepend a count to the front of each line and pipe its out put to tail. Tail was to pipe the last line out put to cut. Cut would then return the first field of the printed output, which would be the count of the files matching both greps. No debugging steps were performed.
Reworked
Two modifications were made to make the script perform as expected. The H option was removed from the first grep, as it was errantly included. The second option was the inclusion of periods before wildcards following text. This scripts structure is depicted in Figure 6.
 Problem No.2: Database Searching and Shell Scripting
Original
Two shell scripts were written to perform this task. The first script, used find to pipe a list of all the files in the database to grep. Grep output all lines containing matches of the word “John”. Greps output was redirected to the file, “list”. The second script used cat, tail and cut to count the number of lines in the file “list”. It then entered a for loop, starting at one and ending at the number of lines in “list”. Within this for loop, cat was used to print “list” within a subshell. This subshell returned its result, as text, to echo. Echo piped this list to head. Starting from the first line of the list, head piped a number of sequential lines equal to the index of the for loop to tail. Tail then returned the last line of the list, which was always the line at the line number equal to the index of the for loop. This subshell then returned its output, as text, as an argument to wc. Wc then counted and printed the number of characters in the file within that argument. The difference between the value of the index on the final iteration and the current iteration was taken. This value was used to output the unprocessed lines of “list”. This output was redirected to “lista”. Cat and echo were then used to read the contents of list and output them. This output was redirected to “list”, overwriting it. The index used in this script was incorrect, it also had syntactical errors. No code was written to calculate the total number of characters or files read.
Reworked
The –E argument was removed from the first script’s grep argument, as it caused it to fail.
Having been given feedback that my solution for the second script was inefficient, I considered a different approach. Rather than counting the characters using wc, I decided to see if I could use ls. I wrote two test files to determine the suitability of ls for this purpose, counting their characters. Both test files contained eleven characters. The first ended in a new line, the second did not. The first file’s size matches my character count, the second file did not. This caused me to revise my test, comparing the output of ls –al to wc –m. The character counts for both files matched. Seeing that ls –al was a viable option, I replaced wc with ls –al. Ls’s output was piped cut, which returned the field containing the character count.
I then added another variable. This variable was used to store the sum of the current character count and the sum of the previous character counts upon each iteration of the loop. I then added two lines of code to print this character count and the number of files read, which was equal to the number of lines originally in “list”, upon completion of the for loop.
While debugging this program, I saw that I was unnecessarily rewriting the list and making a new, incorrect, index. I removed the lines code doing this, further simplifying the program. The structure of this script can be seen in Figure 7.
 Problem No.3: Environmental Variables
Original
No attempt was made.
Reworked
I first searched for a /proc directory on my machine. As it is running OSX, it did not have one. I then searched online for a command for obtaining hardware information on Unix, searching for something familiar from Linux. I found that sysctl is a part of Unix and all its derivatives. I used uname to obtain the release of the operating system and sysctl to obtain the processor model. I then wrote a bash script to export the results to the MY_OS and MY_PROCESSOR variables. To work around the inability of subshells to modify their parent shells, I ended that script by opening a new, interactive, login shell. The structure of this script can be seen in Figure 8.
Results
 Problem No.1: Database Searching
Original
The original script was flawed. The function returned all sessions between January and September, 2007.
[image:]
[bookmark: _Ref431084925]Figure 1: Problem 1 – Debugging and final results.
[image:]
Figure 2: Problem 2 – Verifying ls –al size = wc –m count.
Reworked
The script returned 13. Debugging was performed by piping the results of both instances of grep to cut. Cut was delimited by a semicolon. The debugging and final outputs can be seen in Figure 1.
 Problem No.2: Database Searching and Shell Scripting
Original
[image:]
[bookmark: _Ref431084965]Figure 3: Problem 2 – Checking that the list generating script works.
Both scripts were non-functional. The first script did not run because grep was passed a –E argument, which seemed to operate differently in Bourne shell than it did in Bash. The second scrip did not run due to syntactical errors, but if it had, it would have given incorrect output. The file on the line of “list” equal to the current index of the for loop would have its characters counted. The list would then be reduced in size so the number of lines in it would equal the difference between the current index and the maximum index. This caused the script jump over files in the list, until it reached the end of the list, at which point it would continually read the last file in the list. Equation (1) describes which lines of the file “list” would be processed.
[bookmark: _Ref431055403]	 (1)
[image:]
[bookmark: _Ref431084997]Figure 4: Problem 2 – Final results.
Reworked
The first script generated a list of 622 filenames, as seen in Figure 3. The second script counted 918638 characters and 622 files, as seen in Figure 4.
 Problem No.3: Environmental Variables
Original
No attempt was made.
Reworked
The results of the env before and after running this script can be seen in Figure 5.
Analysis
 Problem Breakdown
Problem No.1: Database Searching
The original answer was incorrect for two reasons. The first was that I did not take into account that the wildcard operator includes zero. This allowed all the months before October to fit the pattern. The second was, had the wildcard operated as I had incorrectly thought it would have, there are 31 days in May, and the criteria was sessions from the first through the thirtieth. I corrected the problem the wildcard issue by prefacing them with periods. The period operator allows for any character. By doing this, I limited patterns that matched to what I intended them to be.
[image:]
[bookmark: _Ref431085010]Figure 5: Problem 3 – Final results, env before and after running script.
 Problem No.2: Database Searching and Shell Scripting
The original script was unnecessarily complex and incorrect because of it. The biggest issue I had writing this script was an issue with characters. Occasionally, Microsoft Word replaces - with – . Both characters are displayed the same way in vim. This issue was particularly problematic because there were what I thought were multiple possible causes. The first possible cause I attributed this error to was Apple’s coreutils being outdated, as is the case with their version of rsync. I attempted to solve this issue by installing the macports version gnu coreutils. As I had updated to a beta of their operating system, which in hindsight was a very unwise decision, this required that everything be compiled locally. Upon completion, seeing as this did not resolve the issue, I then proceeded to assume there were some limitations of the Bourne Shell that I was unaware of. After rewriting most of the code, I noticed the text highlighting in vim was not only slightly errant, which is usual, but inconsistent. This is when it occurred to me that while vim and the terminal were not showing me the difference between the characters, there was one there. Once I determined that was the cause of my script being broken, I debugged it and noticed the last file on the list was repeatedly being read. Writing out what line would be read on each loop for a few iterations revealed the error to me and I corrected it.
 Problem No.3: Environmental Variables
There was no original script attempted for this problem. Online research and my understanding of how subshells work lead me to believe that it is not possible to export an environmental variable set in a script to the parent shell that spawned the subshell executing the script. All the examples I found were circuitous. While there were clear explanations concerning how they worked, I did not find any explanations concerning why they worked. I noticed that they all going through steps that all seemed to rely on writing to or reading from a file in /dev. I didn’t completely understand how it worked, but it seemed to me all the workarounds involved using file access to keep the subshell open until the task they were trying to accomplish had been completed. I decided to do the same thing in a more direct way by writing an unending bash script. I did this by ending my script with a command to open a new interactive login shell. While it does not meet the written requirements of the question, it passes the test given. I am fairly certain that any process that can pass that test given is doing the same thing, albeit in a less direct way.
Overall
The scripts written for this assignment were written using gnu versions of all the programs involved, including the Bash shell. The Bash shell was used to emulate the Bourne shell by setting the shebang to sh. Table 1, which describes all the programs used to create the necessary scripts to complete this assignment is located in the Appendix. The largest problem I had with this assignment was the issue of characters being misrepresented in OSX applications. This issue arose again as I coded the flowcharts in textEdit. I managed to rectify it this time by using the Textwrangler text editor. This text editor seems to use a font set that prints every character uniquely and has the option to save files in ASCII. This causes error messages to occur when misrepresented non-ASCII characters are present, preventing them from going unnoticed and causing errors further along coding and debugging processes.
Appendix
 Code - Problem No.1: Database Searching
Original
grep -iHRE 'spike.*sustained|sustained.*spike'| grep -E '*_200405*' | cat -n | tail -n1 | cut -f1
Reworked
#!/bin/bash
LC_ALL=C
grep -irE 'spike.*sustained|sustained.*spike' . | grep -E '*_2004050.*|*_2004051.*|*_2004052.*|*20040530.*'| cat -n | tail -n1 | cut -f1

Code - Problem No.2: Database Searching and Shell Scripting
Original
#!/bin/sh
#Generate the list:
find ./ -type f | grep –E John > list

#!/bin/sh
#Loop list and count:
x=`cat list | cat –n | tail –n1 | cut –f1`
for j in `seq 1 $x`
do
	a=`$x - $j`
	echo “currently counting characters in the file:”
	echo “$(cat $list)” | head –n$j | tail –n1
	wc -m “$(echo “$(cat $list)” | head –n$j | tail –n1)”
	echo "$(cat $list)" | tail -n$a > lista
	echo -e "$(cat $lista)" > list
done
Reworked
#!/bin/sh
find ./ -type f | grep John > list

#!/bin/sh
x=`wc -l list | cut -d ' ' -f1`
for j in `seq 1 $x`
do
 curfile=`head -n$j list | tail -n1`
 curchar=`ls -al $curfile | cut -d ' ' -f5`
 totchar=`expr $totchar + $curchar`
 printf "Currently counting characters in the file: %s\nThis file contains %d characters.\n" "$curfile" "$curchar"
done
printf "The total number of characters counted is: %d\nThe total number of files counted is: %d\n" "$totchar" "$x"

[bookmark: _GoBack]Code - Problem No.3: Environmental Variables
Original
No attempt was made.
Reworked
#!/bin/bash
#Add the following TWO lines to the .bashrc to set
#MY_PROCESSOR and MY_OS everytime a shell is opened
export MY_PROCESSOR="$(sysctl -n machdep.cpu.brand_string)"
export MY_OS="$(uname -v)"
#Do NOT add the following line to the .bashrc.
#It's purpose here is to create the illusion of
#modifying the environment of a shell from a subshell.
exec /bin/bash –li

Flowcharts of Scripts

Problem No.1: Database Searching
[image:]
[bookmark: _Ref431084862]Figure 6: Problem 1 – Flowchart of script.

[image:]
[bookmark: _Ref431085115]Figure 7: Problem 2 – Flowchart of script.
Database Searching and Shell Scripting
Problem No.3: Environmental Variables

[image:]
[bookmark: _Ref431085188]Figure 8: Problem 3 – Flowchart of Script.

Table of Programs and Arguments Used.

	Program
	Program Description
	Arguments
	Description

	grep
	This program searches for and returns matches to files or expressions input.
	-E
	Extended regular expressions, allows grep ‘a|b’ to find a or b.

	
	
	-H
	Print filename of matches, default when multiple files match.

	
	
	-r
	Search recursively.

	
	
	-i
	Ignore case when looking for matches.

	cut
	This program returns fields of text, cutting them at delimiter’s.
	-f#
	Return the data between the #-1 and # cuts.

	
	
	-d ‘X’
	Set delimiter to be X

	ls
	This program lists files and folders in a directory.
	-a
	The main.

	
	
	-l
	This syance.

	expr
	This program performs arithmetic and returns the result.
	+-
	This is how arithmetic is done in the Bourne shell.

	wc
	This program returns a count of data or lines in a file.
	-l
	Count the number of lines.

	
	
	-m
	Count the number of characters.

	tail
	This program returns the last lines input to it.
	-n#
	Return the last # lines.

	head
	This program returns the first lines input to it.
	-n#
	Return the first # lines.

	printf
	This program prints returns formatted text.
	%d
	Print a decimal representation of the data in the list at the same position as %d occurs.

	
	
	%s
	Print a string representation of the data in the list in at the same position as %s occurs.

	sh
	Bourne Shell. This shell is universal, its on every *nix machine.
	
	

	bash
	Bourne Again Shell. This shell has more functionality than the Bourne shell, but is not as widely distributed.
	-l
	Shell will be opened as a login shell, reading the .bash_profile.

	
	
	-i
	Shell will be opened as an interactive shell.

	
	
	export
	Sets environmental variable in current shell.

	echo
	This program prints text.
	-e
	Enable backslash arguments. Such as \n, for newline.

[bookmark: _Ref49489911][bookmark: _Ref270161398]Table 1. Explanation of programs and arguments used.

ECE 3822: Software Tools for Engineers	September 26, 2015
image3.png
+/book_19/00006383_20070106/Goewey_John/eg_61. txt
./book_19/00006801_20040208/Gof fney_Johnie/eg_0@. txt
./book_19/00006801_20040208/Gof fney_Johnie/eg_01.txt
+/book_19/06007133_20101208/Goge1_Johnsie/eg_00.txt
+/book_19/06007133_20101208/Goge1_Johnsie/eg_01.txt
+/book_19/00008394_20040120/Gof_John/eg_0.txt
+/book_19/00008394_20040120/Goff_John/eg_1.txt
./book_19/00008723_20101221/Goffigan_Johnathon/eg_6e. txt
+/book_19/00008723_20101221/Goffigan_Johnathon/eg_61.txt
+/book_19/06009297_20040307/Gofman_Johnna/eg_0@. txt
+/book_19/06009297_20040307/Gofman_Johnna/eg_01.txt
+/book_19/00009862_20040227/Goforth_Johnnie/eg_00.txt
J/book_19/00009862_20040227/Goforth_Johnnie/eg_01.txt
622,1 Bot

image4.png
eoe ~[datasets — -bash — %5

20040307 /Gofnan_Johnna/eg_oe. txt
This file contains 1817 characters.
Currently counting characters in the file:
20040307 /Gofnan_Johnna/eg_61. txt

This file contains 1095 characters.
Currently counting characters in the file:
20040227/Goforth_Johnnie/eg_00.txt

This file contains 1162 characters.
Currently counting characters in the file:
20040227/Goforth_Johnnie/eg_01.txt

This file contains 1095 characters.

The total number of characters counted is:
The total number of files counted is: 622
Patricks-MBP:datasets pat$

+/book_19/00009297_

+/book_19/00009862_

+/book_19/00009862_

918638

image5.png
Patricks-MBP:~ pat$
Patricks-MBP:~ pat$
Patricks-MBP:~ pat$ 1348
env | grep -E 'MY_OS|MY_PROCESSOR"

Patricks-MBP:~ pat$ p3.sh

Patricks-MBP:~ pat$ 1348

env | grep -E 'MY_OS|MY_PROCESSOR"

MY_PROCESSOR=Intel(R) Core(TM) i7-262eM CPU @ 2.70GHz
MY_OS=Darwin Kernel Version 15.0.0: Tue Sep 15 12:43:52 PDT 20
15; root:xnu-3247.10.9~3/RELEASE_X86_64

Patricks-MBP:~ pat$ exit
logout

saving session...

copying shared history

image6.png
Reworked Solution to Problem 1

LC_ALLsetto C

'

grep -irE 'spike.*sustainedlsustained *spike’ .

'

grep -E "*_2004050.%1*_2004051.%1*_2004052.%1*20040530 *'

'

cat-n

tail -nl

cut -f1

end

image7.png
Reworked Solution to Problem 2

we-l (e list

e ol 5]

A 4
il -l
A 4
NO|

v
expr+ [totchar curfile
l L)
-
r curfile

Print prompt, name of file and character count [

]

]
Print_ prompt, number of files and charac

- totfile totchar

JEi+l

image8.png
Reworked Solution to Problem 3

(=)

A
Export MY_OS to shell

A J

Export MY_PROCESSOR to shell

A A

Open an interactive login subshell

YES,

subshell still running?

NO|

image1.png
~[datasets — -bash — %3

1
12
13

14
15
16

+/book_08/00003605_20040517/Bahamonde_Marlyn/eg_00.txt
./book_08/00003605_20040517/Chamorro_Josue/eg_0@. txt
+/book_15/00000168_20040525/Alishia_Giarratano/eg_0e.t

+/book_15/00002347_20040516/Boiles_Jerrold/eg_0@.txt
+/book_15/00006784_20040501/Bohne_Jenna/eg_0@. txt
+/book_16/00008982_20040513/Deangelo_Felicita/eg_00.tx

+/book_16/00008982_20040513/Garufi_Cassandra/eg_00.txt
./book_16/00008982_20040513/Russey_Janay/eg_0.txt
./book_18/00007737_20040514/Brazen_Moses/eg_00.txt

Patricks-MBP:datasets pat$ pl.sh

16

Patricks-MBP:datasets pat$

image2.png
eoe ~/Dropbox/prod/swte/test — -bash — 384

Patricks-MBl
Patricks-MBl

Patricks-MBP:swte pat$ cd test
Patricks-MBP:test pat$ wc -m *
11 testa
12 testb
23 total

Patricks-MBP:test pat$ ls -al *

-rw-r--r-- 1 pat staff 11 Sep 26 14:39 testa
-rw-r--r-- 1 pat staff 12 Sep 26 15:01 testb
Patricks-MBP:test pat$

