ECE 3822	EXAM NO. 1	Fall’2015
Name:

	Problem
	Points
	Score

	1
	35
	

	2
	35
	

	3
	30
	

	Total
	100
	

Notes:
(1) For this exam you are allowed to open a terminal window on your computer, you are allowed to web surf with Google, but you cannot use online chat or other interactive services.
(2) Create your solutions in an MS Word document and email it to the instructor at the end of the exam. Use “ECE 3822” in the subject line, and name your attachment using our usual convention of “lastname_firstname_ex01.docx.” Points will be deducted if you get the file name wrong.
(3) In addition to providing your code, explain your solution to each problem.
You must show your code for each of these examples and briefly explain the steps you followed to reach your solutions. Your explanations don’t need to be long but must cover all the key points that resulted in your answers.
Problem No. 1: The text database we provided in class has a directory structure of the form:
data/book_07/00009869_20040409
where “00009869” represents the subject ID, and “20040409” represents the date. For all the sessions that occurred in the year 2007 between May 1 and May 30, and count the number of text files for which the word “spike” and the word “sustained” occur at least once. Note that your solution must be case insensitive.

Answer:
First, we would have to find the amount of sessions that occurred in the year 2007 between the dates of May 1st and May 30th. To do so we would use a similar command used in homework 1 but slightly modified. The command has to take into account the dates we are interested in. Therefore to find the sessions to match the date the command we would use would be ls b*/*200705??*/*/*. By using this command piped to wc –l it will return the amount of text files that correspond to the session times desired as shown in Figure 1.

[image: C:\Users\John\Google Drive\Software Tools\Exams\q1b.PNG]
Figure 1: Command used to find correct sessions corresponding to the date

From this point, for curiosity, I wanted to identify the amount of files that contained each specific word we searched for. To search for the files that contained the word “spike”, the command ls ./b*/*200705??*/*/* | xargs grep “spike”|wc –l would be used. This command will bring up all of the sessions that correspond with the correct dates, and search them for the word “spike” by using xargs and grep. By using this command, as shown in Figure 2, the result of the search is that 28 files contain the word “spike” in the data set. We would then use the same command to search the files for “sustained”, but alter what we use grep to search for. Therefore the command for this would be ls ./b*/*200705??*/*/* | xargs grep “sustained”|wc –l which would return with 8 files that have the word “sustained” in them.
[image: C:\Users\John\Google Drive\Software Tools\Exams\q1c.PNG]
Figure 2: Displaying the amount of files containing “spike” or “sustained”, followed by filtering for files that contain both words. Lastly displaying the search for the three files containing both words.

Finally, we would use a similar command to what was used to search for each specific word, but filtered to account for both words being present in the text file. To do so we would use the command ls ./b*/*200705??*/*/* | xargs grep “spike”|grep “sustained”|wc –l as this would take the output of xargs grep “spike” and pipe/filter it for text files that will then have “sustained” in them as well. This command will return with the value a value of 3, which to check I then unsuppressed the command by removing the |wc –l part and received the three files that were desired as they contained both words. Though on a second pass of the code I noticed that to be correct, the grep function would need to have the –I option as this would nullify case differences. Although as shown in Figure 3 the cases in this problem did not matter, but in other problems this could make or break the solution.
[image: C:\Users\John\Google Drive\Software Tools\Exams\q1d.PNG]
Figure 3: Searching through the files for each word separate, then both together. This search was case insensitive to identify all “spike” and “sustained” matches regardless of case.

Problem 2: For the text database, generate a list of filenames whose full pathname contains the name “John”. Write a shellscript that loops over this list and counts the number of characters in the file. Your shellscript should output each filename as it is processed, the number of characters in the file, and a summary that shows the total number of files processed and the total number of characters.

Answer:
We are to first locate filenames whose full pathname contain the name “John”, and from the first question we can use a similar ls command with a different wildcard search. However, this will be done inside of a shell script, which will also count the characters from the text files inside of the paths found with names related to “John”. Each file is to be counted as a file processed, at the end of the loop over the files, the total amount of characters must be displayed as well as the total number of files processed. So the first line of the script will search the desired files and output them to a list using the command ls ./b*/*/*John*/* > john.list.
Following defining this list of pathnames that were output to john.list, a counter was initialized to count the total number of files processed through the following loop. Using while loop to read through john.list line by line the information was processed accordingly. The standard reading while loop while read –r LINE do; done <john.list was initially used to process through each line of files, but it was noted that this loop alone will skip the final file of the loop. Therefore, to account for this the loop was altered to reflect this by using the changed while loop, while read –r LINE || [[-n $LINE]]; do; done <john.list. This piece will read the last line of the file as it will somewhat add a blank line at the EOF so the last file is read rather than skipped.
Getting into the while loop, the word count of each file must be identified. To obtain the word count of each file, the command wrd_cnt=$(wc –c < $LINE) was used. Although initially the problem that occurred that the output of wc –c $LINE would not only print the amount of characters as the output, but both the number of characters and file name. While is not wrong for what we needed, it looked somewhat sloppy having the number before the file name. So using the line wc –c <$LINE suppressed the file name being output and would generate just the number of characters per file. For the end of the file all of the total number of characters must be tallied, and so a variable name tot_cnt will accomplish this by adding each new files characters to it each while loop execution using ((tot_cnt+=wrd_cnt)). The rest of the code will print each file as it is processed, the amount of characters per file, and what number the file was processed. The counter is incremented each iteration of the while loop, and lastly the total number of words and files is printed. To print the information echo –e was used as this will print each field and the –e option takes into consideration that \n means a new line. The shell script used can be seen in Figure 4, and the end of the output can be viewed in Figure 5.

[image: C:\Users\John\Google Drive\Software Tools\Exams\q2.PNG]
Figure 4: Shell script commented code, reads through pathname of directories with name “John” and counts characters per file and files processed. Ends with outputting total characters, and total files processed.
[image: C:\Users\John\Google Drive\Software Tools\Exams\q2_b.PNG]
Figure 5: Output of Figure 4 notice at the end it says 622 files processed but the last file says 621, this is because the counter started at zero, reflecting that the modified while loop executed correctly.

Problem 3: We have discussed the relationship of the .bashrc file to your overall environment. Write a script that sets an environment variable called “MY_OS” to the specific version of the operating system loaded in your machine. You cannot hardcode the operating system version. You must get this from the system so that your script can run on any Linux machine. You also need to set MY_PROC to the model name of the processor that your system is using (e.g., Intel Xeon). Again, this must be done in a machine-independent manner and work on any Linux system.
This script must also export this variable back to your root shell. Specifically, I should be able to do the following:
(1) login
(2) run your script (e.g., sh my_script.sh)
(3) echo $MY_OS
(4) echo $MY_PROC
and see the information. Alternately, I could embed this script in your .bashrc file.
Answer:
To display the operating system you would use lsb_release –a which will work on Linux distributions but possibly not Macs. To display the processor information of the given Linux computer or server cat /proc/cpuinfo can be used, which provides a lot of details of the processor. However, these commands must be defined as environmental variables so that if echo $MY_OS or echo $MY_PROC are executed in the shell after the shell script is run, that these commands will display the information as intended. The challenge comes in the fact that if you run the shell script by using sh my_script.sh or bash my_script.sh the variables will not be exported to the environment as shown in Figure 6. Instead when the echo $MY_OS or echo $MY_PROC are used after running the script in those two ways the command will return a blank line, as the variable is non-environmental.
[bookmark: _GoBack]To create the environmental variable it took a bit of research to understand how to achieve making these variables. Initially I thought by using the export command that the variables would remain in the environment after the script was executed, though this is not how that would work. Rather we must source the shell script so that it executes the content of the file passed as an argument in the current shell. We already use source for our aliases we defined in our .bashrc files. So by using this it will save the variables in our files as arguments in our current shell, and therefore the command echo $MY_OS or echo $MY_PROC will return there corresponding information as shown in Figure 6.
[image: C:\Users\John\Google Drive\Software Tools\Exams\q3.PNG]
Figure 6: Before and after execution of the sourced shell script
Though this is a fine way of executing the commands in the script, this alternatively can be added to the .bashrc file. By entering into our .bashrc file and entering in the command . my_script.sh underneath the final entry in .bashrc this means every time the shell is opened the command can be run, provided that you are on a Linux based distribution. More than this you could add each variable separate into the .bashrc file but for this case just sourced the shell script at the bottom of the .bashrc file. In Figure 7 shows how this was appended to the .bashrc file. Figure 8 displays what happens once the shell script was added to the bottom of .bashrc. Notice that once bash was executed, both echo $MY_OS and echo $MY_PROC returned the value of the current computer.
[image: C:\Users\John\Google Drive\Software Tools\Exams\q3pb.PNG]
Figure 7: Displays what was appended to the .bashrc file

[image: C:\Users\John\Google Drive\Software Tools\Exams\q3pc.PNG]
Figure 8: Output of echo $MY_OS and echo $MY_PROC after the .bashrc file was updated

image3.png
jsnyder ~/software_tools/data_set $
| we -1

28

jsnyder ~/software_tools/data_set $

ned" | wc -1

8

jsnyder ~/software_tools/data_set $
| grep -i "sustained"|wc -1

3

1s ./b*/*20070522?*/*/* | xargs grep -i "spike"

1s ./b*/*20070522?*/*/* | xargs grep -1 "sustai

1s ./b*/*20070522?*/*/* | xargs grep -i "spike"

image4.png
O 00 N O U &~ WN =

NN RFE PR B RHBB/RH®RB B B
P © O 00 NO UL WN KL O

#!/bin/bash

#looks for pathnames with John in them

1s ./b*/*/*John*/* > john.list

#initalizing a counter

count=0

#read the file of path names with john in them

#the ending option of the while loop addresses...

#..the issue of skipping the last file in the list of paths

while read -r LINE || [[-n $LINE 11;

do

#counts the amount of characters per file, the <$LINE suppresses the file name output
wrd cnt=$(wc -c < $LINE)

#counts the total amount of characters in the files to be used at the end of script
((toticnt+=wrd7cnt)ﬂ
echo -e "File Name: $LINE\nWord Count:$wrd cnt\nFiles Processed:$count\n"
((count+=1))

done <john.list

echo -e "The total number of words is: $tot cnt"
echo -e "The total number of files processed is: $count"

image5.png
File Name:./book_19/00008394_20040120/Goff_John/eg_01.txt
Word Count:1095
Files Processed:615

File Name:./book_19/00008723_20101221/Goffigan_Johnathon/eg_00.txt
Word Count:1471
Files Processed:616

File Name:./book_19/00008723_20101221/Goffigan_Johnathon/eg_01.txt
Word Count:1095
Files Processed:617

File Name:./book_19/00009297_20040307/Gofman_Johnna/eg_00.txt
Word Count:1817
Files Processed:618

File Name:./book_19/00009297_20040307/Gofman_Johnna/eg_01.txt
Word Count:1095
Files Processed:619

File Name:./book_19/00009862_20040227/Goforth_Johnnie/eg_00.txt
Word Count:1162
Files Processed:620

File Name:./book_19/00009862_20040227/Goforth_Johnnie/eg_01.txt
(Word Count:1095
Files Processed:621

The total number of words is: 918638
The totalrnuqber of fi}e;rprocessed is: 622

image6.png
jsnyder ~/software_tools $ echo $MY_0S
jsnyder ~/software_tools $ echo $MY_PROC

jsnyder ~/software_tools $. my
my_script.sh myscript.sh

jsnyder ~/software_tools $. my_script.sh
No LSB modules are available.

jsnyder ~/software_tools $ echo $MYOS

jsnyder ~/software_tools $ echo $MY_0S
Distributor ID: Ubuntu Description: Ubuntu 14.04.3 LTS Release: 14.0
4 Codename: trusty
jsnyder ~/software_tools $ echo $MY_PROC
processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 69 mod
el name : Intel(R) Core(TM) 15-4300U CPU @ 1.90GHz stepping : 1 micr
ocode : 0x19 cpu MHz : 2494.484 cache size : 3072 KB physical id : ©
siblings : 1 core id : 0 cpu cores : 1 apicid : 0 initial apicid :
0 fpu : yes fpu_exception : yes cpuid level : 13 wp : yes flags : fp
u vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse3
6 clflush mmx fxsr sse sse2 syscall nx rdtscp lm constant_tsc rep_go
od nopl xtopology nonstop_tsc pni pclmulqdq monitor ssse3 cx16 ssed_
1 sse4_2 movbe popcnt aes xsave avx rdrand lahf_1lm abm bugs : bogomi
ps : 4988.96 clflush size : 64 cache_alignment : 64 address sizes :
39 bits physical, 48 bits virtual power management: |

image7.png
120 # Run the current 0S and Processor
121 # Run MY 0S for 0S and MY PROC for Processor
122 . my_script.sh

image8.png
jsnyder ~ § bash

No LSB modules are available.

Jsnyder ~ § echo $MY_0S

Distributor ID: Ubuntu Description: Ubuntu 14.04.3 LTS Release: 14.0
4 Codename: trusty

Jsnyder ~ & echo $MY_PROC

processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 69 mod
el name : Intel(R) Core(TM) 15-4300U CPU @ 1.90GHz stepping : 1 micr
ocode : 0x19 cpu MHz : 2495.076 cache size : 3072 KB physical id : ©
siblings : 1 core id : 0 cpu cores : 1 apicid : 0 initial apicid :
0 fpu : yes fpu_exception : yes cpuid level : 13 wp : yes flags : fp
u vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse3
6 clflush mmx fxsr sse sse2 syscall nx rdtscp lm constant_tsc rep_go

od nopl xtopology nonstop_tsc pni pclmulqdq monitor ssse3 cx16 ssed_

1 sse4_2 movbe popcnt aes xsave avx rdrand lahf_lm abm bugs : bogomi
ps : 4990.15 clflush size : 64 cache_alignment : 64 address sizes :

39 bits physical, 48 bits virtual power management:

image1.png
Jsnyder ~/software_tools/data_set § 1s ./b*/*20070522?*/*/* | wc -1
180

Jsnyder ~/software_tools/data_set § 1s ./b*/*20070522*/*/* | head
. /book_18/00000405_20070516 /Braud_Miquel/eg_00.txt

. /book_18/00000405_20070516 /Braud_Miquel/eg_01.txt

. /book_18/00000405_20070516 /Deneui_Kerstin/eg_00.txt

. /book_18/00000405_20070516 /Deneui_Kerstin/eg_01.txt

. /book_18/00000405_20070516/Edra_Gosz/eg_00. txt

. /book_18/00000405_20070516/Edra_Gosz/eg_01.txt

. /book_18/00000405_20070516/Gildersleeve_Francoise/eg_00.txt

. /book_18/00000405_20070516/Gildersleeve_Francoise/eg_01.txt

. /book_18/00000405_20070516/Jewell_Dipanfilo/eg_00.txt

. /book_18/00000405_20070516/Jewell_Dipanfilo/eg_01.txt

image2.png
Jsnyder ~/software_tools/data_set § 1s ./b*/*20070522?*/*/* | xargs grep "spike"
| we -1

28

Jsnyder ~/software_tools/data_set § 1s ./b*/*20070522*/*/* | xargs grep "sustai

ned" | wc -1

8

Jsnyder ~/software_tools/data_set § 1s ./b*/*20070522*/*/* | xargs grep "spike"
| grep "sustained"|wc -1

3

Jsnyder ~/software_tools/data_set § 1s ./b*/*20070522*/*/* | xargs grep "spike"
| grep "sustained”

. /book_18/00008089_20070521/Joleen_Diseth/eg_00.txt:The patient was relatively d
rowsy and with the more prolonged bursts of spike and wave activity, the technol

ogist did not notice any change in the patient's behavior. The more prolonged b

ursts of slow spike and wave activity seemed to emerge as the patient became inc
reasingly sleepy, but spontaneous arousals were noted. There were also some sus

tained bursts with more left focal spike and slow wave and focal slowing noted i
n the transition to sleep.

./book_18/00008089_20070521/Kalmus_Chi/eg_00.txt:* Left occipital sharp waves or
spikes seen a little bit more prominently briefly around 10 a.m. on the morning
of the 8th but not sustained.
./book_18/00008089_20070521/Malson_Wilmer/eg_00.txt:* Left occipital sharp waves
or spikes seen a little bit more prominently briefly around 10 a.m. on the morn

ing of the 8th but not sustained.

