Exam 1 Rework
Software Tools for Engineers
Fall 2015
Ian MacFarlane
Temple University

1. The basic idea of this problem is this: we have text files in subdirectories, which we call our text database. We want to search the contents of this text database for occurrences of a target word/pattern. We don’t care about the case of the word (the word in the text file could be “TARGETWORD” or “targetWoRd.” We don’t care: we want them all.)

To get a list of files containing a target word (or in this case, a regular expression, more on that later) at least once, grep must look inside all of the files and directories of the data sample. Using the –r tag for recursive search, grep will search inside a file’s contents. Also grep will find all files within a directory and it will also go through all subdirectories if given a folder name while –r is enabled. grep also has to search through the contents of each file. The -l modifier will match the target word within the file (it will move on to the next file once the first target word is found, so the list only contains unique filenames) and output only the directory of the file. grep must search for all cases of the target word, so –i is used to search without regard to case. At this point the command looks like:

grep –rli <directory>

For this problem, we have two target words. Instead of giving grep a pattern with 

-e, we will use –E to give grep a regular expression. A regular expression allows us some flexibility. To search for one word, we would use:

grep –e “targetword” –rli <directory>

For two words, we need to use a regular expression, or regexp:

grep –E “targetword1.+targetword2|targetword2.+targetword1” –rli <directory>

To break this down, let me explain the syntax. “.+” means to match any character one or more times. “|” is the logical operator OR. This regexp will match targetword1, then any amount of characters until targetword2. If that doesn’t match anything, it will try to find targetword2, then any amount of characters one or more times, then targetword2. If there is a match, due to our modifiers to grep (that is, -ril), the directory of the file will be output and grep will work on finding the pattern in the next file, and so on until no files are left to process.

Note that this solution involves “greedy” regexps, and may not be suitable for all similar problems. The use of “lazy” regexps is not supported within POSIX-compliant environments as far as I can tell. Also, this solution ignores word separators (in a regexp, “\b”). If we were dealing with stricter criteria, we’d want to implement these things.

Next, we have to narrow this data down by date. Luckily, the data is set up consistently. Below is a text file with an ID number of 00009869 and the date April 9th, 2004.

data/book_07/00009869_20040409/file.txt

Since every file is named with this convention, and we have a list of file directories from our previous command, we just need a way to match all files with dates between May 1st and May 30th in the year 2007. A regexp can help us with this. Assuming we have a list of directories to process,

grep –E “_200705[0-2][0-9]/|_20070530/”

will find all files that match our criteria. We don’t have to worry about the date matching the ID number since we preceded the pattern with “_” and no ID numbers begin with “_”. The use of [0-2] and [0-9] indicates a range. Any number within the brackets will match once. [0-2][0-9] will match from 00 to 29. By adding a pipe (the operator OR), we can add the last day, May 30th. Let’s run it:

[image: ]

There are 3 results. In retrospect, cutting down processing time by only searching for the words in files that matched our date criteria would be a smart move. This would involve running a find or ls command to generate a list of files in a directory, narrowing the list down by date and then applying grep with a regexp. Narrowing down by filename is faster than searching inside each file, so the filename criteria should have been applied. In bigger datasets, this can be an issue.
	
2. The basic idea: we want to take all files that contain “John” in their path and count all the characters inside each of those files and display that count. At the end, we want to display the total characters counted and number of files counted. All of this must be done in a shell script.

First, I used the find command to generate a list of files. Then, I used grep “John” to find any lines that contained John. For good measure, that grep was run in case-insensitive mode (modifier –i) and for ease of looping, number-each-line mode (modifier –n).

[image: ]

Running the command more john.list gets this:

[image: ]

Now, we have to think about how to solve the problem. We have a list of files and we want to find information about each of those files. That means we need to loop over every file in the list and process each file. After that, we want total numbers to print at the end.

To do this, let’s hop into emacs to write a shell script:

[image: ]

Some peculiarities in the script: I found the character/byte count by using wc (word count) modified with –c to show character/byte count of a stream of each file’s contents (using cat). Displaying only the filename is easy with basename. In order to set variables to the outputs of a command line argument, I used back ticks, although $(expression) works as well. wc adds some whitespace, so grep -o extracts only the numbers. [0-9]\+ is a regexp that matches any consecutive numbers occurring one or more times.


Here are the results of sh john_character.sh:

[image: ]

3. This problem essentially wants us to write a script that writes some information about our computer to environment variables.

The hard part of this problem is getting the solution to work on multiple machines. Mac OS X has a tool called sw_vers that will give us the OS information, but it won’t work on other operating systems. sw_vers also only gives us a result of “OS X”, which is referencing the GUI built on top of Darwin, which is the kernel, or actual operating system. $MACHTYPE is a default environment variable that gives us the OS, version and architecture but what if it doesn’t exist on a system? 

Since we could be dealing with multiple systems, it makes sense to make the script handle different cases depending on the OS. Each OS has different ways of finding CPU information, for example. Using uname -s, I found the type of OS (in this case Darwin or Linux) and this solution is POSIX-compliant, meaning it should be compatible with a range of systems.


In emacs:

[image: ]

Running this script using sh doesn’t work because sh starts its own environment. Variables can’t reach above into parent processes. They only have scope in child processes. If I wanted to run this in Bourne shell and get accurate environment variables, I’d have to open an instance of sh and run this script while working within that shell. Running this and echo-ing the variables in the current shell (my system uses OS X 10.11, based on Darwin 15):

[image: ]



I tested the script in electrodata, which uses Linux:
[image: ]

[bookmark: _GoBack]To improve this solution, we’d have to implement ways to handle different OS types. There’s FreeBSD, Debian, Solaris, etc. They don’t all report “Linux” or “Darwin” when uname –s is run.
image6.png
#!/bin/sh
#name: os_proc_variable_set
#desc: sets some 0S and processor info to env. variables

os_type="uname -s*
os_version="uname -r’

export MY_0S="$os_version"

if [ $os_type == "Darwin" ]
then
export MY_PROC=""sysctl -n machdep.cpu.brand_string™"
elif [ $os_type == "Linux" ]
then

export MY_PROC=""grep —-r /proc/cpuinfo —e 'model name'"’





image7.png
bauxite:bin aluminum$ echo $MY_0S $MY_PROC

bauxite:bin aluminum$ . ./os_proc_variable_set.sh
bauxite:bin aluminum$ echo $MY_0S $MY_PROC

15.0.0 Intel(R) Core(TM) i7-2720QM CPU @ 2.20GHz
bauxite:bin aluminum$




image8.png
tucll260@electrodata:~$ emacs test.sh
tucll260@electrodata:~$ . ./test.sh
tucll260@electrodata:~$ echo $MY_0S
3.13.0-52-generic

tucll260@electrodata:~$ echo $MY_PROC

model name : Intel(R) Xeon(R) CPU E5603 @ 1.60GHz




image1.tiff
bauxite:data_v@@ aluminum$ grep -E "sustained.+spike|spike
grep -E "_200705[0-2] [0-9]/|_20070530/"
./book_18/00008089_20070521/Joleen_Diseth/eg_00.txt

. /book_18/00008089_20070521/Kalmus_Chi/eg_00. txt
./book_18/00008089_20070521/Malson_Wilmer/eg_00. txt

.+sustained" -rli .




image2.png
bauxite:bin aluminum$ find ~/bin/data_v@@ -type f | grep "John" -i | grep -n > john.list




image3.png
D UTA WN

:/Users/aluminum/bin/data_v0@0/book_00/00000684_20130208/Nop_Johnnie/eg_00.txt
:/Users/aluminum/bin/data_v@0@/book_00/00000684_20130208/Nop_Johnnie/eg_01. txt
:/Users/aluminum/bin/data_v@0@/book_00/00001737_20130211/Noonon_Johnathan/eg_00. txt
:/Users/aluminum/bin/data_v@0@/book_00/00001737_20130211/Noonon_Johnathan/eg_01. txt
:/Users/aluminum/bin/data_v@0/book_00/00003310_20130208/Noorda_Johnette/eg_00.txt

e MMlearc/aliiminiim/hin/data wBD 7hnnlk OO /OBOAIITIL D0120°90Q /NManrdsa Tahneat+a /am B1 +v+




image4.png
#!/bin/sh
# name: john_character.sh
# finds number of characters within each file in a list of files

john_list="/Users/aluminum/bin/john.list"
number_of_lines="cat $john_list | wc -1 | grep -o "[0-9]\+""
total_num_of_chars=0

current_line_id=1

while [ $current_line_id -le $number_of_lines ]

do
current_line="grep -r $john_list -e ~$current_line_id":" | sed 's/.x://'"
num_of_chars="cat $current_line | wc -c | grep -o "[0-9]\+""
total_num_of_chars="expr $total_num_of_chars + $num_of_chars’
echo "File $current_line_id: "“basename "$current_line" ", $num_of_chars chars"
current_line_id="expr $current_line_id + 1°

done

echo "Total number of files processed: $number_of_lines"
echo "Total number of characters: $total_num_of_chars"l




image5.png
riLc
File
File
File
File
File
File

Vo0,
639:
640:
641:
642:
643:
644:
Total number of files processed:
Total number of characters:
bauxite:bin aluminum$

CY_Yl. LAL,
eg_00. txt,
eg_01.txt,
eg_00. txt,
eg_01.txt,
eg_00. txt,
eg_01.txt,

414999
1471
1095
1817
1095
1162
1095

Lhal s
chars
chars
chars
chars
chars
chars

644

953566





Bam ot
Sl oo
e Uty

. T el b s s e b s o i
e e e
s of s g o, Wt e e o
e e L ARG ok o e e bt

Tt ot lscniins e word o s e e cprsion,
e S B G S A
s e sl Ui - o i s e .
i e l or et s et
Kttt e ) ot o
e e et 1

s ok, oottt vrs Intetofhin 1 e it
e e
i b o o e IS0

o e s | e el O T g

i g, b oy s of charces e
e s el e .3 e o g s
e e o s ek o

Nttt s e sy g be e r 1.
S e Thetseol e 50 e i POSI.
omn et o 423138 6 A 5 o s




