ECE 3822	EXAM NO. 1	Fall’2015
[bookmark: _GoBack]Name: Elliott Krome

	Problem
	Points
	Score

	1
	35
	

	2
	35
	

	3
	30
	

	Total
	100
	

Notes:
(1) For this exam you are allowed to open a terminal window on your computer, you are allowed to web surf with Google, but you cannot use online chat or other interactive services.
(2) Create your solutions in an MS Word document and email it to the instructor at the end of the exam. Use “ECE 3822” in the subject line, and name your attachment using our usual convention of “lastname_firstname_ex01.docx.” Points will be deducted if you get the file name wrong.
(3) In addition to providing your code, explain your solution to each problem.
You must show your code for each of these examples and briefly explain the steps you followed to reach your solutions. Your explanations don’t need to be long but must cover all the key points that resulted in your answers.
Problem No. 1: The text database we provided in class has a directory structure of the form:
data/book_07/00009869_20040409
where “00009869” represents the subject ID, and “20040409” represents the date. For all the sessions that occurred in the year 2007 between May 1 and May 30, and count the number of text files for which the word “spike” and the word “sustained” occur at least once. Note that your solution must be case insensitive.

Problem 2: For the text database, generate a list of filenames whose full pathname contains the name “John”. Write a shellscript that loops over this list and counts the number of characters in the file. Your shellscript should output each filename as it is processed, the number of characters in the file, and a summary that shows the total number of files processed and the total number of characters.

Problem 3: We have discussed the relationship of the .bashrc file to your overall environment. Write a script that sets an environment variable called “MY_OS” to the specific version of the operating system loaded in your machine. You cannot hardcode the operating system version. You must get this from the system so that your script can run on any Linux machine. You also need to set MY_PROC to the model name of the processor that your system is using (e.g., Intel Xeon). Again, this must be done in a machine-independent manner and work on any Linux system.
This script must also export this variable back to your root shell. Specifically, I should be able to do the following:
(1) login
(2) run your script (e.g., sh my_script.sh)
(3) echo $MY_OS
(4) echo $MY_PROC
and see the information. Alternately, I could embed this script in your .bashrc file.

((1)) I began by finding all directories corresponding to the provided range of dates. Figure 1 displays the command used to do this as well as a sample of the results. This works because the naming convention within this database means that the *2007_05* expression will only find matches that correspond to the dates. The other numbers in the path name are padded by 4 zeros and do not have an underscore.
[image: ../Dropbox/Screenshots/Screen%20Shot%202015-09-23%20at%2010.24.43%20AM.png]
Fig. 1. Finding files in date range
I proceeded to I build the grep filter as shown below. I piped the output of the date delimiting command into an xargs grep construction. The –l option means that only the names of files with matches are output. The –r option recursively looks down the directory tree for all files. The –i option ignores case. Using the pattern ‘seizure\|sustained’ as the pattern argument to grep meant that it looked for any files containing at least one of those two key words. The output of this grep filter was sent to wc with the –l option. Wc with the –l option counts the number of lines fed to it. Hence, in this case, it counted the number of text files in which the word “spike” and the word “sustained” occur at least once. The whole command is shown in figure 2.
[image: ../Dropbox/Screenshots/1_success.png]
Fig. 2. Entire string of commands for prompt 1 with output

((2)) I began by creating a list of all John files using the first command shown in figure 3. This proved to be sensitive to case, so I switched to the second command with the –iname option to deal with the case issue. A sample of the outputted text file is shown in figure 4.
[image: ../Dropbox/Screenshots/Screen%20Shot%202015-09-23%20at%2010.45.20%20AM.png]
[image: ../Dropbox/Screenshots/2_2makejohn_bothcase.png]
Fig. 3. Generating list of files with *john* in their path

[image: ../Dropbox/Screenshots/Screen%20Shot%202015-09-23%20at%2010.32.48%20AM.png]
Fig. 4. Sample of johns.txt

I needed to run a script that would deal with the two text files one level further down in the directory tree from the paths shown in figure 4. To do this I needed to alter this text file so that old line was doubled and concatenated with the specifying locations “/eg_00.txt” and “eg_01.txt.” To do this I used the following emacs macro. Figure 5 shows the text file after one iteration of the macro, before I ran the macro to the end of file.
F3 		//begin macro definition
C-space		//set mark
C-e 		//move to end of line, so that the region selects the whole line
M-w 		//kill line without deleting
/eg_00.txt	//type specifying text
RET		//new line
C-y		//yank previous line
/eg_01.txt	//type specifying text
C-f		//move to beginning of next line (for purpose of iterability)
F4		//finish macro definition
M-0 F4 	//run macro until end of file
[image: ../Dropbox/Screenshots/2_3alteringjohns_to_inclued_eg.png]
Fig. 5. Johns.txt after one iteration of emacs macro
Having created a file containing all of the paths in the database containing *john*, I wrote a shell-script to loop over the list and output the specified information. This script is shown in figure 6, and the call to the script is shown in figure 7.
[image: ../Dropbox/Screenshots/2_4script.png]
Fig. 6. Script to loop over file list and output values specified in prompt
[image: ../Dropbox/Screenshots/2_5calling_wc_loop.png]
Fig. 7. Final call to shell script
Figure 8 shows the the beginning and end of the output of this shell script. Each line indicates the file path being processed, the character count for that file, and running tallies of the number of files processed and the accumulated character count from all files processed.
[image: ../Dropbox/Screenshots/2_6output_begin.png]
[image: ../Dropbox/Screenshots/2_7output_end.png]
Fig. 8. Sample output from shell script

((3)) The first step in this problem was to determine which commands could generate the strings containing the OS and hardware information with which we are concerned. Figures 9 and 10 show the two commands that we will use, as well as the output of these commands. The second command generated a line which we can refine later via text processing to produce a more desirable string.
[image: ../Dropbox/Screenshots/3_1os_command.png] [image: ../Dropbox/Screenshots/3_2cpu_command.png]
Fig. 9. Generating OS information		Fig. 10. Generating hardware information
Having found commands that would generate the strings necessitated by the prompt, the next step was to put them in a shell script capable of setting these strings as the global variable MY_OS and MY_PROC. This script is shown in figure 11. It includes the previously mentioned textual manipulation on the string that becomes MY_PROC.
[image: ../Dropbox/Screenshots/3_3script.png]
Fig. 11. Script to set global variables MY_OS and MY_PROC
There were two ways of using this script to set the environment variables MY_OS and MY_PROC, both involving the source command. It can be done manually, as shown in figure 12. Alternatively, it can be set in the .bashrc file as shown in figure 13. The results of setting it in the .bashrc and logging in anew are shown in figure 14.
 [image: ../Dropbox/Screenshots/3_4sourcing_script_manually.png]	 [image: ../Dropbox/Screenshots/3_5add_script_to_bashrc.png]
Fig. 12. Sourcing from myscript.sh manually		Fig. 13. Adding source command to .bashrc

[image: ../Dropbox/Screenshots/3_6success_at_login.png]
Fig. 14. Output of echo calls upon fresh login
Figure 13 includes the conditional requirement to only source the shell script if it can be found in the home directory. If one does not include this requirement and the script is not present, then the error shown in figure 15 is displayed.[image: ../Dropbox/Screenshots/Screen%20Shot%202015-09-25%20at%203.55.43%20PM.png]
Fig. 15. Error generated from not including conditional in internal .bashrc source call

image3.png
503 Sep 23 10 32 AM f1nd hosp data/ -name 'xJohnx' > johns.txt

image4.png
~/ece 3822¢% f1nd hosp_data/ -iname 'xjohnk' > johns.txt

image5.png
| - - === ¥ =7

osp_data//book_| 00/00000684 _20130208/Nop_. Johnnle
hosp_data//book_00/00001737_20130211/Noonon_Johnathan
hosp_data//book_00/00003310_20130208/Noorda_Johnette
hosp_data//book_00/00004256_20130208/Nooney_John
hosp_data//book_00/00004532_20130208/Noordam_Johnie
hosp_data//book_00/00004868_20130208/Noonkester_Johna
hosp_data//book_00/00005286_20130213/Noor_Johnathon
hosp_data//book_00/00006180_20130211/Nopper_Johnny
hosp_data//book_00/00006765_20130211/Noorani_Johnetta
hosp_data//book_00/00007568_20130208/Noorigian_Johnna
hosp_data//book_00/00007617_20130211/Norales_Johnsie
hosp_data//book_00/00007833_20130208/Nopachai_Johnnie
hosp_data//book_00/00007846_20130208/Noori_Johnie
hosp_data//book_00/00008626_20130208/Nooner_John
hosp_data//book_00/00009805_20160211/Nora_Johnny
hosp_data//book_00/00009806_20130211/Norals_Johnson
hosp_data//book_01/00004478_20130408/Leon_Johnson
hosp_data//book_02/00000249_20130123/Kingsolver_Johnny

image6.png
hosp_data/book_00/00000684_20130208/Nop_Johnnie/eg_00.txt
hosp_data/book_00/00000684_20130208/Nop_Johnnie/eg_01.txt
osp_data/book_00/00001737_20130211/Noonon_Johnathan
hosp_data/book_00/00003310_20130208/Noorda_Johnette
hosp_data/book_00/00004256_20130208/Nooney_John
hosp_data/book_00/00004532_20130208/Noordam_Johnie
hosp_data/book_00/00004868_20130208/Noonkester_Johna

image7.png
" iii{=Nread line

\[] charcount="wc -m < ~/ece_3822/$line"’
num=$((num+1))

tot=$((tot+charcount))

printf "filename:%s Iharcount: %d files processed: %d accumulated\
charcount = %d\n " "$line" "$charcount” "$num" "$tot"

done

image8.png
~/ece_3822% cat johns_ed.txt | sh loop.sh

image9.png
Nop_Johnnie/eg_00.txt charcount: 2270 files processed: 1 accumulated charcount = 2270
/Nop_Johnnie/eg_01.txt charcount: 1510 files processed: 2 accumulated charcount = 3780
/Noonon_Johnathan/eg_00.txt charcount: 1903 files processed: 3 accumulated charcount = 5683
/Noonon_Johnathan/eg_01.txt charcount: 1078 files processed: 4 accumulated charcount = 6761
/Noorda_Johnette/eg_00.txt charcount: 1186 files processed: 5 accumulated charcount = 7947
/Noorda_Johnette/eg_01.txt charcount: 1510 files processed: 6 accumulated charcount = 9457
/Nooney_John/eg_00.txt charcount: 1431 files processed: 7 accumulated charcount = 10888
/Nooney_John/eg_01. txt charcount 1078 flles processed 8 accumulated charcount 11966

image10.png
Goffigan_Johnathon/eg_00.txt charcount: 1471 files processed: 639 accumulated charcount = 947302
Goffigan_Johnathon/eg_01.txt charcount: 1095 files processed: 640 accumulated charcount = 948397
Gofman_Johnna/eg_00.txt charcount: 1817 files processed: 641 accumulated charcount = 950214
Gofman_Johnna/eg_01.txt charcount: 1095 files processed: 642 accumulated charcount = 951309
Goforth_Johnnie/eg_00.txt charcount: 1162 files processed: 643 accumulated charcount = 952471
Goforth Johnnie/eq 91.txt charcount: 1095 files processed: 644 accumulated charcount = 953566

image11.png
~/ece_3822$% uname -sr
Darwin 14.5.0

image12.png
~/ece_3822% sysctl -a | grep machdep.cpu.brand_string
machdep.cpu.brand_string: Intel(R) Core(TM) i5-4288U CPU @ 2.60GHz

image13.png
xport MY_0S="uname -sr’
lexport MY_PROC="sysctl -a | grep machdep.cpu.brand_string | cut -d' ' -f2,3,4,5,6,7,8"

image14.png
~$ echo $MY_0S; echo $MY_PROC

~$ source ./myscript.sh

~$ echo $MY_0S; echo $MY_PROC

Darwin 14.5.0

Intel(R) Core(TM) i5-4288U CPU @ 2.60GHz

~$ l

image15.png
[-f ~/myscript.sh I;
source ~/myscript.sh

image16.png
Last login: Fri Sep 25 15:31:48 on ttys000
September 2015
Su Mo Tu We Th Fr Sa
12 3 4 5
6 7 8 910 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

Uptime: 15:32 up 3 days, 1:02, 2 users, load averages: 3.07 2.11 1.81

image17.png
-bash: /Users/elliottkrome/myscript.sh: No such file or directory

image1.png
~/ece_3822% fTind hosp_data/ —-name "*_200705%"
hosp_data//book_18/00000405_20070516
hosp_data//book_18/00001899_20070514
hosp_data//book_18/00003627_20070514
hosp_data//book_18/00004099_20070531
hosp_data//book_18/00005385_20070531
hosp_data//book_18/00007825_20070516
hosp_data//book_18/00008089_20070521
hosp_data//book_18/00009167_20070517
hosp_data//book_19/00009519_20070529

image2.png
~/ece_3822¢$ find hosp_data/ -name '%_200705%' | xargs grep -lri 'seizure\|sustained'|wc -1
150

