ECE 3822	EXAM NO. 1	Fall’2015
Name: Dana Joaquin

	Problem
	Points
	Score

	1
	35
	

	2
	35
	

	3
	30
	

	Total
	100
	

Notes:
(1) For this exam you are allowed to open a terminal window on your computer, you are allowed to web surf with Google, but you cannot use online chat or other interactive services.
(2) Create your solutions in an MS Word document and email it to the instructor at the end of the exam. Use “ECE 3822” in the subject line, and name your attachment using our usual convention of “lastname_firstname_ex01.docx.” Points will be deducted if you get the file name wrong.
(3) In addition to providing your code, explain your solution to each problem.
You must show your code for each of these examples and briefly explain the steps you followed to reach your solutions. Your explanations don’t need to be long but must cover all the key points that resulted in your answers.
Problem No. 1: The text database we provided in class has a directory structure of the form:
data/book_07/00009869_20040409
where “00009869” represents the subject ID, and “20040409” represents the date. For all the sessions that occurred in the year 2007 between May 1 and May 30, and count the number of text files for which the word “spike” and the word “sustained” occur at least once. Note that your solution must be case insensitive.

Command:

$ find . -type d \(-name "*_2007050*" -or -name "*_2007051*" -or -name "*_2007052*" -or -name "*_20070530" \) -exec find {} -iname "*.txt" \;

Problem 1 was accomplished in two steps. First, the find command was mainly used to accomplish the first part of problem 1. Since the dates of the sessions are organized by directory, the find command first searched for the directories contained the sessions from May 1st to May 30th in the year 2007. How the directories were searched for was that the names of the directories had to contain “_200705,” based on the example of how the directories are structured. The days were then searched based on their 10’s digit value, so from 0 to 3. However, the May 31st, 2007 sessions had to be excluded, so each 10’s digit value had to be typed individually on the command line due to that small detail. The files could not simply be found just by “*_200705*” since that would also include the sessions from May 31st. The second find command that is used with –exec looks into those directories and finds and lists all the text files by looking for files with “.txt” extension. The output of this was piped to the wc -l command to check the find command and to count the number of lines since the text file are listed line by line.

Result of command:

$ find . -type d \(-name "*_2007050*" -or -name "*_2007051*" -or -name "*_2007052*" -or -name "*_20070530" \) -exec find {} -iname "*.txt" \; | wc -l
140

The amount of files in the year 2007 from May 1st to May 30th came out to be 140. To make sure, the command was modified to count all the sessions in the month of May in 2007.

$ find . -type d \(-name "*_200705*" \) -exec find {} -iname "*.txt" \; | wc -l
180

Next, the command was modified again to count only the number of sessions files on May 31st, 2007.

$ find . -type d \(-name "*_20070531" \) -exec find {} -iname "*.txt" \; | wc -l
40

A total of 180 sessions in the month of May 2007 came up, 40 of them coming from May 31st, 2007 and the rest from the other days of May, which was 140 files. The numbers add up correctly, therefore the find command for this problem runs correctly and gives the desired output.

For the second part of question 1, the grep command was the main part of the solution. The grep command searches the files recursively (-r), ignores letter case (-i), and lists the results as a list (-l). The command searches for files containing both the words “spike” and “sustained,” which are group together and the grep knows to look for both those words simultaneously with “\|” to separate the words.

Command:

	$ grep –ril ‘spike\|sustained’

Combining both parts together, the files between May 1st, 2007 to May 30th 2007 that contain the words “spike” and “sustained” were found and listed. The grep command was piped with the find command so the grep command lists all the files that contain the words and that list of files are inputted to the find command. All of that was piped to wc –l to count the number of files.

Command:

$ grep -ril 'spike\|sustained' | find . -type d \(-name "*_2007050*" -or -name "*_2007051*" -or -name "*_2007052*" -or -name "*_20070530" \) -exec find {} -iname "*.txt" \; | wc -l

Result of command:

$ grep -ril 'spike\|sustained' | find . -type d \(-name "*_2007050*" -or -name "*_2007051*" -or -name "*_2007052*" -or -name "*_20070530" \) -exec find {} -iname "*.txt" \; | wc -l
140

The resulting number was 140 files. To double check this number is correct, the same command ran for each date to see if the numbers added up.

$ grep -ril 'spike\|sustained' | find . -type d \(-name "*_20070530" \) -exec find {} -iname "*.txt" \; | wc -l
0

$ grep -ril 'spike\|sustained' | find . -type d \(-name "*_2007052*" \) -exec find {} -iname "*.txt" \; | wc -l
40

$ grep -ril 'spike\|sustained' | find . -type d \(-name "*_2007051*" \) -exec find {} -iname "*.txt" \; | wc -l
100

$ grep -ril 'spike\|sustained' | find . -type d \(-name "*_2007050*" \) -exec find {} -iname "*.txt" \; | wc -l
0
Based on the breakdown, 100 files came from May 10th, 2007 to May 19th 2007 and the other 40 files came from May 20th, 2007 to May 29th, 2007. The break down adds up to 140, therefore the results of the actual command is valid.

Problem 2: For the text database, generate a list of filenames whose full pathname contains the name “John”. Write a shellscript that loops over this list and counts the number of characters in the file. Your shellscript should output each filename as it is processed, the number of characters in the file, and a summary that shows the total number of files processed and the total number of characters.

First, the list of filenames was generated running the command:

$ file . –type f | grep John > exam2q2.list

The list was saved into the file “exam1q2.list,” and was fed to shell script “exam1q2.sh” as its first argument. This shell script will read each line for the file name, open the file, and count the number of characters. The whole process is inside a while loop and will continue looping until it reaches the end of “exam1q2.list.” The total number of characters counted is saved in a variable called “total,” and the amount of characters counted for each file is stored in the variable “count.” To get the amount of characters for every file, the wc –m command counts the amount of characters and outputs the number and the file it counted from. Then, it was piped with awk to only print the first column of the output, which is the number. The value in “count” is added to the value in “total” every iteration. A variable called “a” keeps track of the amount of files that are being read; it is a counter and after every iteration (meaning, every time a file/line is read) the value stored in “a” increases by 1.

Script:
#!/bin/bash
sh scriptname 1

a=0 # initialize counter
total=0 # initialize total char count

while read line
do
 # count number of files read
 #
 a=$((a + 1))
 echo "file $a"
 echo "Reading file: $line"

 # counting characters
 #
 count=$(wc -m $line | awk '{print $1}')
 echo "number of characters: $count"

 #counting total number of characters
 #
 total=$((total + count))
 echo "total number of characters: $total"
done < $1

Result of script:
file 622
Reading file: ./book_19/00006383_20070106/Goewey_John/eg_01.txt
number of characters: 1147
total number of characters: 918638

The last output of the script is that it has read a total of 622 files and the total amount of characters is 918638. To make sure the script has read all the files, the number of lines in “exam1q1.list” file was counted using wc –l.

$ wc -l exam1q2.list
622 exam1q2.list

It also outputted 622 files, so the shell script did loop through all the files and totaled all the characters.
ex

Problem 3: We have discussed the relationship of the .bashrc file to your overall environment. Write a script that sets an environment variable called “MY_OS” to the specific version of the operating system loaded in your machine. You cannot hardcode the operating system version. You must get this from the system so that your script can run on any Linux machine. You also need to set MY_PROC to the model name of the processor that your system is using (e.g., Intel Xeon). Again, this must be done in a machine-independent manner and work on any Linux system.
This script must also export this variable back to your root shell. Specifically, I should be able to do the following:
(1) login
(2) run your script (e.g., sh my_script.sh)
(3) echo $MY_OS
(4) echo $MY_PROC
and see the information. Alternately, I could embed this script in your .bashrc file.

Script
#!/bin/bash

export MY_OS=$(uname -r)
export MY_PROC=$(cat /proc/cpuinfo | grep 'model name' | uniq)

The command uname –r retrieved the operating system and was stored in the variable MY_OS. For the processor, the information had to be retrieved from the cpu info directory and had to find the model name using the grep command, which was stored in the variable MY_PROC. These stored variables are then exported into the environment by the export command. This script file was saved under the file name “exam3q3.sh.” On the terminal, the script ran by sourcing it using “.”. The script had to be sourced to properly have the export command to run so the variables are exported to the environment.

Results of script:

$. exam1q3.sh
$ echo $MY_OS
3.19.0-15-generic
$ echo $MY_PROC
model name : Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz

[bookmark: _GoBack]The results show after sourcing the program, the script does export the variables and calling them on the command line, their value does print on the terminal. Except for running a script file, the .bashrc file can be edited to permanently make these environment variables. To do this, the variable name and the value it is being assigned to is all that is needed. After editing the .bashrc file, it has to be sourced in order for those variables to take effect.

