ECE 3822	EXAM NO.1 REWORK	Fall 2015
Problem 1:
The first problem involved finding all of the eeg data sessions that occurred between May 1st and May 30th 2007, and counting the number of files for which the words “spike” and “sustained” appeared at least once each.
Because the month of May as 31 days, we have to get a bit creative with the final two characters. They could not just be limited to two ? wildcards. The curly braces in combination with the ls command are what is called a brace expansion. They limit the search to the specified range of numbers (inclusive). So {01..30} would return the files between 01 and 30 (inclusive). The error messages seen in Figure 1 tell me that this search expression is correct and that folders with other dates in May simply don’t exist. Additionally, this also proves that the brace expansion is inclusive since the command searched for and failed to find book_??/????????_20070501 and book_??/????????_20070530. In conclusion, there are 7 folders that match the criteria of being dated between May 1st 2007 and May 30th 2007, shown along with the date combinations that were not found in Figure 1.1.
[image:]
Figure 1.1 - Result of search expression
However, if we want any chance at counting the output lines and not ending up with a much larger number than 7 due to reading in all of the error messages, these error messages somehow must be discarded. For this purpose, the expression 2> /dev/null can be used. This expression indicates that stderr (standard error) should be redirected to the null device /dev/null which discards all data that is written to it. The successful error-free output is shown in Figure 1.2.
[image:]
Figure 1.2 - Output using 2> /dev/null

Alternatively, the stdout (standard output) could be redirected to a list, by modifying the redirect to that in Figure 1.3. However the successful results would then be stored in a list, as shown in Figure 1.4. This makes manipulating the contents of the directories slightly more complicated than using the previous solution. A bash script could be written to loop through the list items and search for directories using the relative paths listed in the list in order to manipulate them.
[image:]
Figure 1.3 - Redirect stdout 1>list.list

[image:]
Figure 1.4 - Successful results in list.list

However, continuing with the first method, in order to access the text files, more two more subfolder ‘/’ must be added with the asterisk wildcard after each. To restrain the search to the text files, the .txt extension should be appended. This /*/*.txt is shown in Figure 1.5, as well as the number of files matching the listing command.
[image:]
Figure 1.5 – Verification of the number of resuts

To be able to use that listed output, it should be pipped to a grep command using the xargs functionality which tells the program to use the piped contents as path arguments and not for their purely textual content. The –E flag indicates that the argument should be interpreted as a regular expression. The –l flag indicates that normal output should be suppressed and to instead “print out the name of each input file from which output would normally have been printed” (grep man page). This ensures that each file is only printed once, thereby allowing us to accurately count the number of text files for which the words “spike” and “sustained” occur at least once each. The –i flag indicates that case should be ignored.
Following the OR theory of quiz 2, it can be infer that a regular expression AND must be possible. The syntax for a regex AND can be simulated using the .*. However, this expression tracks order so that a regex of ‘spike.*sustained’ would only return hits where sustained occurred after spike. In order to ignore order, an OR (|) must be included so that the grep returns both files where spike occurred first and files where sustained occurred first. The resulting regex is ‘spike.*sustained|sustained.*spike’, the file matches for which are shown in Figure 1.6.
[image:]
Figure 1.6 - Files that contain both "spike" and "sustained"

Removing the –l flag will display the contents of each file so that the presence of both the word “spike” and the word “sustained” can be confirmed in each file, as outlined in Figure 1.7. The –color=always flag highlights text from the first word found to the second.
[image:]
Figure 1.7 - Appearances of "spike" and "sustained" in the files

Finally, all that is left to do is to pipe the output to the all-too-familiar command wc –l which will count each outputted line, as specified by the –l flag. Figure 1.8 displays the number of files that can be counted in Figures 1.6 and 1.7.
[image:]
Figure 1.8 - Final word count on matching files
As can be seen in Figure 1.8, only 8 files matched the desired criteria.

Problem 2:
For problem 2, the task was to create a shell script that would count the number of characters in each file for which the complete pathname contains “John”. Thanks to the specific nomenclature of the eeg data, “John” would only be expected to be found in the directories under the date. Therefore a simple /*John* could be appended to the search expression used in Problem. Since it was to be done in a shell script, a shell script was opened using emacs task2.sh.
The #!/bin/bash indicates to the program loader that the file should be run as a bash file. The shopt –s nocaseglob line is a bash command that turns on the bash option to ignore case. The option is muted at the end of the code with the line shopt –u nocaseglob. The enhanced for loop (for i in …) iterates through the results of the ls command and echoes the path of each returned item. The $ in front of the ls command and in front of i in the echo command specifies that the expression following the $ should be interpreted as a bash expression (as an actual path instead of the text for the path). The code in Figure 2.1 tests that the search returns expected directories, shown in Figure 2.2.
[image:]
Figure 2. 1 – Test shell script
[image:]
Figure 2. 2 - Result of running test task2.sh

Since the folders outputted by the command have been verified, the next task is to obtain the character count for each file. The word count command (wc) has a –m flag which returns the number of characters. The $i after wc –m specifies which file the command should be performed on. Since this is a for loop where i is the iteration, the word count command is executed on every file returned by the ls expression for “John”. The ouput is piped to awk ‘{print $1}’ in order to only print the first “column” of the word count output (the numerical word count followed by the input file.) Therefore, piping to awk ‘{print $1}’ only prints out the number of characters counted. The echo statement is formatted to print item: <path to file/filename> char count <number of characters>. The number of characters is then added to a total character counter charsum using double parentheses to add numerically instead of concatenating the output. A file counter, filename, was also implemented and incremented on each iteration in order to keep track of the number of files processed. The final code for task2.sh is shown in Figure 2.3. Figures 2.4 and 2.5 display the output of the script when it is executed.
[image:]
Figure 2.3 - Shell script for Problem 2
[image:]
Figure 2.4 - Problem 2 shell script head
[image:]
Figure 2.5 - Problem 2 shell script tail

The efficacy of this script is proved by creating a dummy text file under a dummy sequence of directories book_14/00001111_22223333/John and running task2.sh on it. The ls command with the –l flag indicates that the length of the test.txt file is 19 characters, as can be seen in Figure 2.6. Task2.sh script is executed, and Figure 2.7 shows that it returns only one matching file, test.txt, and that its character length is 19 characters. The task2.sh script is functional and correct.
[image:]
Figure 2.6 - Check for the character length of test.txt

[image:]
Figure 2.7 - Successful output of the script on the test case
In summary, the total of 953566 returned in Figure 2.5 is reliable and can be considered the total number of characters (including \n and other “special” characters) that appeared in files with a full path name containing “John” (ignoring case.)

Problem 3

Introduction:
Problem three required writing a script that could set variables MY_OS and MY_PROC to the specific version of the operating system (OS) loaded on a machine and to the model name of the processor that the system uses, respectively. The script should export the variables back to the root shell so that anyone could log on, run the script and echo $MY_OS and $MY_PROC to display the contents of these variables for the system. This had to be done in a machine-independent manner, using a shell script.
Task 1:
The first problem to be dealt with was that of obtaining the OS and processor in a machine-independent way. The command should work whether the script was run on an Ubuntu system, a Mac, a Red Hat derived system, or any Linux distribution. Because of the sheer number of versions of operations, using an if/else approach seems unreasonable. Instead, the script should cater to the lowest common denominator.
The uname command, shown in Figure 3.1, prints out the system information. The –a flag prints all there is to say about the system. The –p flag prints out the processor information. Figure 3.1 shows the output for an Intel i686 processor. Getting the operating system version was a little more hairy as some systems don’t support certain flags. Therefore, the OS version has to be “manually” extracted using the awk command. As shown in Figure 3.2, it was verified with Mac-user Emilie Doyle that the 4th column contained the version information, therefore, the awk command was set to print the 4th column with ‘{print $4}’.

[image:]
Figure 3.1 - uname command and its flags

[image: D:\exampic3.png]
Figure 3. 2 - uname command in Mac

Task 2:
The second part of this problem involved placing this command into a shell script. Figure 3.3 shows the script that was implemented. In addition to the commands reviewed in the first part of the problem, the variables were exported to the environment. The first echo should display nothing for $MY_OS since the variable has not yet been set, and the second echo $MY_OS should print out the OS version. Figure 3.4 confirms that the script, when called, behaves as expected.
[image:]
Figure 3.3 - Script to set and export $MY_OS and $MY_PROC

[image:]
Figure 3.4 - Verification

Task 3:
The last part of the problem consisted in integrating the script with the environment. In order to be able to echo the variables set, the shell script must be run using source. Figure 3.5 shows that once this is done, the variables can be echoed as needed.
[image:]
Figure 3. 5 - Successful echo
Alternatively, the shell script can be included in the .bashrc file which sets up the environment every time a new shell is opened. In order to do so, the file must also be sourced, but in the .bashrc, as shown in Figure 3.6. The code’s if statement verifies the presence of the shell script file at the indicated path (using the file flag, -f), then sources the file using the dot operator. Figure 3.7 shows the verification of this method. As “Sup dawg” is a greeting I’ve integrated into my .bashrc file, I see that I have run this file by opening a new screen. The first command run is the echo, and it returns the expected value. Note that it no longer shows the “before and after” values of $MY_OS as those lines were removed from the script so that they would not appear with every new screen opened.
[image:]
Figure 3. 6 - Sourcing the shell script in the .bashrc

[image:]
Figure 3. 7 - Successful echo with script integrated into .bashrc
[bookmark: _GoBack]
image4.png
ons Buffers
Blook_18/00000405_20070516
book_18/60001899_20070514
book_18/60003627_20070514
book_18/60007825_20070516
book_18/60008089_20070521
book_18/60009167_20070517
book_19/60009519_20070529

uU. 1 list.list

image5.png
claire@ubuntu:~/Documents/ece3822/data$ s -1d book_?
70 70 2880

?_200705{01..30}/* 2>/dev/null | wc

image6.png
claire@ubuntu:~/Documents/ece3822/data$ 1s -1d book_
| xargs grep -ELi 'spike.*sustained|sustained.*spike
book_18/60008089_20070521/Joleen_Diseth/eg_00. txt
book_18/60008089_20070521/Kalnus_Chi/eg_00. txt
book_18/00008089_20076521/Malson_Wilmer/eg_00. txt

?_200705{061.

30}/*/*.txt 2>/dev/null

image7.png
claire@ubuntu:~/Documents/ece3822/data$ 1s -1d book_? _200705{01..30}/*/*.txt 2>/dev/null
| xargs grep -Ei 'spike.*sustained|sustained.*spike’ --color=always

:The patient was relatively drowsy and with the mo
re prolonged bursts of nd wave activity, the technologist did not notice any change in the p|
atient's behavior. The prolonged bursts of slow spike and wave activity seemed to emerge as £
he patient became increasingly sleepy, but spontaneous arousals were noted. There were also some|s
ustained bursts with more left focal spike and slow wave and focal slowing noted in the transition

:* Left occipital sharp waves or spikes seen a little
bit more prominently briefly around 16 a.m. on the morning of the 8th but not sustained
:* Left occipital sharp waves or spikes seen a it
tle bit more prominently briefly around 10 a.n. on the morning of the 8th but not sustained.

image8.png
claire@ubuntu:~/Documents/ece3822/data$ s -1d book_? 2?_200705{01..30}/*/*.txt 2>/dev/null
| xargs grep -Eli 'spike.*sustained|sustained.*spike

3

image9.png
#1/bin/bash
echo hello world
shopt -s nocaseglob # set sh option to ignore case

for 1 in $(s -1d book_? *John*); do

echo item: $i
done

shopt -u nocaseglob # unset sh option to ignore case

image10.png
[Slatre@ubuntu:~/Documents/ece3822/data$./task2.sh

hello

world

book_00/00000684_20130208/Nop_Johnnie
book_00/60001737_20130211/Noonon_Johnathan
book_00/60003316_20130268/Noorda_Johnette
book_00/60004256_20130268/Nooney_John
book_00/60004532_20130208/Noordam_Johnie
book_00/60004868_20130208/Noonkester_Johna
book_00/60005286_20130213/Noor_Johnathon
book_00/60006186_20130211/Nopper_Johnny
book_00/60006765_20130211/Noorani_Johnetta
book_00/60007568_20130208/Noorigian_Johnna
book_00/00007617_20130211/Norales_Johnsie
book_00/00007833_20130268/Nopachai_Johnnie
book_00/60007846_20130208/Noori_Johnie
book_00/60008626_20130268/Nooner_John
book_00/00009805_20160211/Nora_Johnny
book_00/60009806_20130211/Norals_Johnson
book_01/60004478_20130468/Leon_Johnson
book_02/00000249_20130123/Kingsolver_Johnny
book_02/00001426_20120123/Kingsley_Johnnie
book_02/60001541_20120214/Kingson_Johnny
book_02/60001706_20120209/Kingshott_Johnna
book_02/60002094_20190209/Kingsland_Johnnie
book_02/00002406_20120110/Kingsbury_Johnie
book_02/60002952_20111231/Kington_Johnson
book_02/60003219_20160210/Kings_Johnetta
book_62/00003757_20100111/Kingma_John
book_02/60004717_20111209/Kingsberry_Johnette
book_02/60005038_20190169/Kingore_Johna
book_02/60006688_20120126/Kingry_Johnathon
book_02/00006724_20120169/Kingman_John
book_02/00007714_20100110/Kingsford_Johnie
book_02/00008491_20120222/Kingrey_Johnathan
book_02/00009176_20140214/Kingston_Johnsie
book_03/60001267_20000130/Pettyjohn_Claudine
book_03/00008501 20000111 /Pettijohn Clarence

#*shell* 98% L21415 (Sh

image11.png
#1/bin/bash
echo hello world

charsu
filesus

0 # declare and initialize character count sum variable
declare and initialize file counter

shopt -s nocaseglob # set sh option to ignore case

for loop to increment through the files with "John" in their complete path name
to count the number of characters in each file, then to sum the total characters
22222222/*John*/*.txt); do

print out the file and its character count
awk '{print $1}' prints only the first column (it excludes the other words that wc prints)
echo item: $i char count: $(wc -m $i | awk '{print 51}')

Add this file's character count to the character count sum
charsun=$((Scharsun+$(we -m $1 | awk '(print 511°)))

Increment the file counter
filesun=$((Sfilesum+1))
done

shopt -u nocaseglob # unset sh option to ignore case
print the total number of characters and files processed

echo total files processed: $filesun
echo total characters found: Scharsum

image12.png
claire@ubuntu:~/Documents/ece3822/data$./task2.sh

hello world

iten: book_00/00000684_20130208/Nop_Johnnie/eg_00.txt word count: 2270
iten: book_00/00000684_20130208/Nop_Johnnie/eg_01.txt word count: 1510
iten: book_00/00001737_20130211/Noonon_Johnathan/eg_60.txt word count: 1903
iten: book_00/00001737_20136211/Noonon_Johnathan/eg_61.txt word count: 1078
iten: book_00/00003310_20130208/Noorda_Johnette/eg_00.txt word count: 1186
item: book_00/00003310_20130208/Noorda_Johnette/eg_o1.txt word count: 1510

image13.png
item: book_19/00009297_20040307/Gofman_Johnna/eg_00.txt word count: 1817
item: book_19/60009297_20040307/Gofman_Johnna/eg_01.txt word count: 1095
item: book_19/60009862_20040227/Goforth_Johnnie/eg_00.txt word count: 1162
item: book_19/60009862_20040227/Goforth_Johnnie/eg_01.txt word count: 1095
total files processed: 644

total characters found: 953566

image14.png
claire@ubuntu:~/Documents/ece3822/book_14/00001111_22223333/John$ 1s -1
total 4

image15.png
claire@ubuntu:~/Documents/ece3822$./task2.sh
hello world

item: book_14/60001111_22223333/John/test.txt char count: 19
total files processe

total characters found: 19

image16.png
claire@ubuntu:~$ uname -a
Linux ubuntu 3.19.0-28-generic #30-Ubuntu SMP Mon Aug 31 15:52:10 UTC 2015 1686 1686 1686 GNU/Linux
clairegubuntu:~$ uname -p

1686

claire@ubuntu:~$ uname -a | awk '{print $4}'

#30-Ubuntu

image17.png
bash-3.2¢ unane -a

Darwin MIDMacBookAir. local 14.5.0 Darwin Kernel Version 14.
9~1/RELEASE X85_64 x86_64

bash-3.28 []

3 PDT 2015; root:xnu-2782.4

image18.png
#1/bin/sh

echo My 05 is $MY_0S

export MY_OS=$(uname -a | awk '{print $4}')
export MY_PROC=$(uname -p)

echo My 05 is now $MY_0S

image19.png
claire@ubuntu:~$ source my_shell.sh
My 0S is
My 0S is now #30 Ebuntu

image20.png
claire@ubuntu:~$ source my_shell.sh
My 05 is

My 05 is now #30-Ubuntu
claire@ubuntu:~$ echo $MY_0S
#30-Ubuntu

image21.png
source the my_shell.sh script that exports my 05 and processor
Af [-f "SHOME/my_shell.sh”]; then

. "SHOME/my_shell.sh"
L

image22.png
Sup dawg
clairegubuntu:~$ echo SMY_0S
#30-Ubuntu

image1.png
claire@ubuntu:~/Documents/ece3822/data$ 1s -1d book_??/2222?222_200705{01..30}

book_18/60000405_20070516
book_18/60001899_20070514
book_18/60003627_20070514
book_18/60007825_20070516
book_18/60008089_20070521
book_18/60009167_20070517
book_19/00009519_20070529

cannot access book_22/? _20070501:
cannot access book_22/? 20070502
cannot access book_2?/?222222?_20070503:
cannot access book_22/? 200705041
cannot access book_22/? ?_20070505
cannot access book_22/? _20070506
cannot access book_22/? 20070507
cannot access book_2?/?222222?_20070508:
cannot access book_22/? _20070509:
cannot access book_22/? _20070510
cannot access book_22/? 20070511
cannot access book_22/? _20070512
cannot access book_22/2222222?_20070513
cannot access book_22/? _20070515
cannot access book_22/? 200705181
cannot access book_2?2/?222222?_20070519:
cannot access book_22/? _20070520:
cannot access book_22/? ?_20070522
cannot access book_22/? 20070523
cannot access book_22/? 200705241
cannot access book_2?/?222222?_20070525:
cannot access book_22/? 200705261
cannot access book_22/? 20070527
cannot access book_22/? 20070528
cannot access book_22/? _20070530:

such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such
such

file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory
directory

image2.png
claire@ubuntu:~/Documents/ece3822/data$ s -1d book_??/227222222_200705{01..30} 2>/dev/null
book_18/00000465_20076516
book_18/00001899_20076514
book_18/00003627_20076514
book_18/00007825_20076516
book_18/00008089_20076521
book_18/00009167_20076517
book_19/00009519_20070529

image3.png
claire@ubuntu:~/Documents/ece3822/data$ s -1d book_: ?_200705{01..30} 1>list.list

