ECE 3822	EXAM NO. 1	Fall’2015
Name: Emilie Doyle

	Problem
	Points
	Score

	1
	35
	

	2
	35
	

	3
	30
	

	Total
	100
	

Notes:
(1) For this exam you are allowed to open a terminal window on your computer, you are allowed to web surf with Google, but you cannot use online chat or other interactive services.
(2) Create your solutions in an MS Word document and email it to the instructor at the end of the exam. Use “ECE 3822” in the subject line, and name your attachment using our usual convention of “lastname_firstname_ex01.docx.” Points will be deducted if you get the file name wrong.
(3) In addition to providing your code, explain your solution to each problem.
You must show your code for each of these examples and briefly explain the steps you followed to reach your solutions. Your explanations don’t need to be long but must cover all the key points that resulted in your answers.
Problem No. 1: The text database we provided in class has a directory structure of the form:
data/book_07/00009869_20040409
where “00009869” represents the subject ID, and “20040409” represents the date. For all the sessions that occurred in the year 2007 between May 1 and May 30, and count the number of text files for which the word “spike” and the word “sustained” occur at least once. Note that your solution must be case insensitive.

First I would open up a bash terminal window and change directory (cd) to the location in which my data is stored. You may wish to use the present working directory (pwd) command to determine exactly where you currently are if you are not sure. An example of this is:
[image:]
My data is not stored in this folder, so I must change the directory to where it is. I use the ‘ls’ command to list the contents of that folder, and sure enough data_v00 is in there.
[image:]
I changed directories into the data_v00 and then did another ‘ls’ in order to check that the information is there (which, shocker, is indeed the correct data directories).
[image:]

In order to find the files that we need to search we must use the command find. We establish were ‘find’ is looking by including a ‘.’ immediately after to indicate the present directory, which is what we want since we only want to access this data set and no others. In order to ensure that only text files are returned, an not just any file path or directory that matches the regular expression that we will be searching, we include “ –type f” which indicates that we are searching for regular text files. These two code fragments alone (“find . –type f”) will return all text files that are in the present directory (data_v00), however, we are only looking for a subsection of those, which fulfill the given prompt. A small fraction of the output of that command is shown below. Note that I had to “Control C” out of the command because there are a mega ton of text files in this small data set. Control C can be used to stop/exit a command. Note that these files don’t match the date we are looking for (ex …/########_20070501/….) so clearly we need to slim these results down to the subset that we want.
[image:]

So, we want to take the result of this search and pipe it to our next fragment of code, which will search through these file names and based on the parameters we give it, will return the files from the date range that we want. A pipe (“|”) is a way to take the output of one command and set it as the input for the next command. The command we will use for this second command is “grep” and we will feed it all of those text files from the find command result. We will need to give grep something to search for in these file names, so we will use a regular expression to do this. A regular expression is a way to write or denote a type of file or path, or range or files or paths that you may want to obtain. Common items used in regular expressions include wildcards, “*”, and place holders, “?”. Wildcards can be used to represent any alphanumeric character and any number of said characters, while place holders denote the exact number of alphanumeric characters there.
	EXAMPLE: Representing a phone number with wild cards and slash or place holders
		Regular number: (215)579-5826
		Wildcard number: (*)*-*
		Place holder number: (???)???-????
		Wildcard & placeholder: (*)-?*?-??* (there are multiple ways this could be done, this is only one option)

Another important thing is that in regular expressions you can specify a range or a set collection of values to search, within the same characters, through the use of square brackets (“ []”). If you wish to set a certain collection of number as an option, you separate the values with commas, say only even single digit numbers you could write “ [2, 4,6,8]”. If you want to set a range of numbers you would separate the first and the last number of the range with a dash, like so “[2-4]” to represent the numbers between and including 2 and 4 (ie 2,3,4).

The way that these folders and files are named is given above in the prompt, but to recap, after the book, the first 8 numbers represent the patient ID and the next 8 numbers represent the date of the record. In order to set the date range of May 2007 we need a regular expression to evaluate to that range. I used “200705[01-30]” to represent the days May 1 through May 30 of the year 2007. It is very important to not forget that the single digit numbers have a zero in front of them. This is important because of the overall formatting of the data. If you forget that zero, then you would not get any values for May 1-9th because it would be searching for “2007051” which would only be 7 characters instead of 8, and there are none that match that in the data set. So if you forgot the 0 then you would be missing all of the results that match this that occurred May 1-9th.

You can’t just grep the results of the find for that regular expression alone though, because each file has the patient ID in front of the date, and the patient ID is also 8 characters, so your regular expression might evaluate to the patient ID of a date outside of our range, instead of the correct date. In order to eliminate that chance I extended the regular expression to include not only the patient ID but also the patient name and the text file name.

The complete regular expression could be /*_200705[01-30]/*_*/eg_??.txt
I used a wildcard to denote the patient ID (NOTE: you could just as easily have done ???????? for the patient ID since you know it will be eight characters if it is put in correctly. You would run the risk of if someone accidently entered it in incorrectly, then it wouldn’t be counted.) followed by an underscore to match the formatting, followed by our regular expression. Then in sticking with convention there is a slash, and then patient last name, underscore, patient first name. However, that is a lot, so I just used 200705[01-30].

Then, I piped the results of the grep into a file that I named p1.txt. This is done by typing a “>” after the command and then writing the file name. This could be a file that exists, or you can simply make one directly in the command. The complete command is:
[image:]
 And now if I “ls” in the current directory, p1.txt shows up (it is the last one listed here).
[image:]
So now if you use the “more” command to see the contents of p1.txt you see something like this:

[image:]
So the text file p1.txt was more or less just to check that the command runs correctly.

In order to then read the contents of these files I used the ‘xargs’ command. What xargs essentially does in this instance is to take the output of the previously listed command and pipe it into the new command, but it treats the output of the previous command as individual instances. So in this example, it takes all of the text files that fit the criterion and then feeds them into the next grep command, so then grep will actually look through the file contents, not just the file name or path. I used two instances of xargs and two instances of grep to determine which files had both the word ‘spike’ and the word ‘sustained in them. In both cases, I used the –i and –L flags. –i makes it case insensitive and –L outputs the file name that contains the string, instead of the string itself. I then sent this result to a text file p12.txt just to verify that it produced results.
[image:]
The contents of file p12.txt look like this (but it doesn’t really mean that much to us considering we were looking for the file contents, still it is nice to have).
[image:]
In order to get the total number of files that contain both of those words we can use the ‘wc’ command and throw the –l flag which will give us the number of lines and since each file is on a different line it will tell us our total. The result looks like this:
[image:]
So the total number of files that contain both ‘spike’ and ‘sustained’ is 167.

In order to test that this method is correct I made a directory with a set of test data. In this directory (data_test), there are three folders. For the sake of brevity, and so that it fits the command I used, I made the patient ID’s only one digit long. These three folders represent from different times- the first is 20070501 (May 1,2007), the second is 20070502 (May 2, 2007) and the third is 20070603 (June 3, 2007). This means that only the first two should be found by the first grep command and passed on to the second. In 20070501 I added three patients, John Smith, Johnnie Brown and Jane Smith. For John Smith I added two text files eg_01.txt (that contains only “spike sustained”) and eg_02.txt(that contains only “other words”). For Johnnie Brown, I put two text files eg_01.txt (contains “spike”) and eg_02.txt (contains only “sustained”). For Jane Smith, I put two files again, eg_01.txt (contains “spike”) and eg_02.txt (contains only “sustained”). In 20070502 I put two patients James Bond and John Bond. For James Bond I put one text file eg_01.txt (contains “spike”). For John Bond I put two files eg_01.txt (“spike”) and eg_02.txt (“sustained”). In 20070603 I put two patients Johnny Black and Johnn Page. Each have one text file in them each that contains “spike sustained”.

Test Data Hierarchy and Directory Names:
[image:]

So I can test each part of my command now. First I will test the find . –type f and pipe that to a wc –l (line count) to count the number of results. Based on my test data I would expect to find 11 files.
[image:]
Next I try the grep for the specified date range. We expect 9 files (2 from Smith, Brown, Smith, Bond and 1 from other Bond).
[image:]
Then we try the xargs for spike only. From the 9 files, we expect 5 files to return (Smith, Smith, Brown, Bond and Bond)
[image:]
Then we only expect one file to be returned when we do the full command because 1 from Smith.
[image:]

Problem 2: For the text database, generate a list of filenames whose full pathname contains the name “John”. Write a shellscript that loops over this list and counts the number of characters in the file. Your shellscript should output each filename as it is processed, the number of characters in the file, and a summary that shows the total number of files processed and the total number of characters.

In order to find the filenames that have the string ‘John’, I used the find command in the current directory, which was accomplished through the use of the period. I also included specifics; I used the –type flag to make sure that only text files (f) showed up and in order to make sure all forms of ‘John’ are found by grep you need to use the –i flag which ignores cases. I piped these results to a file p2.list (what is shown below is an example of the output if you did not pipe the result into a file) and also a text file.
[image:]

[image:]

I then checked to make sure that this command makes sense by running it on my test data set. We would expect 8 files (6 different names, but some have multiple files) of them to show up. This checks the –i flag because for Johnn Page and Johnnie Brown, the directory names were not capitalized. Additionally, it shows that it will return forms of ‘John’ ie Johnnie, Johnn, Johnny.

[image:]
I then went and counted the number of characters in each file by using the command ‘wc –c’. Here is an example of the output, and below is the complete table of values.
[image:]

	File
	Number of Characters
	Total Number of Chars
	Number of Files

	Johnnie Brown eg_01
	6
	6
	1

	Johnnie Brown eg_02
	10
	16
	2

	John Smith eg_01
	17
	33
	3

	John Smith eg_02
	13
	46
	4

	John Bond eg_01
	6
	52
	5

	John Bond eg_02
	11
	63
	6

	Johnny Black eg_01
	16
	79
	7

	Johnn Page eg_01
	16
	95
	8

This is the result that I get when I run my shell script on the test cases, and it matches perfectly to what I calculated above.
[image:]

The shell script that I wrote is:
[image:]
Where the variables count and totalChars are initialized to zero, and then I created a loop that loops through the .list file that contains all of the file names that match the search for ‘John’ and in the loop it counts the characters of each file by using cat and then using ‘wc –c’ for the character count, and it updates the total character count and the total count of files processed. It then echos all of these results in the form that the prompt asked for.

When I run it on the real data, my output looks like this:
[image:]

Note: in the test data directory, the shell script was named 2p.sh, but in the real data, the script is called p2.sh, but contains the same code. The names were different just so I could keep track of different versions when I was writing and testing the code.

So it would appear that there are 642 files that match “John”, with a total of 947542 chars in all of the files. I even did a “wc –l” on p2.list to see if there were in fact 642 files and there were indeed.
[image:]

Problem 3: We have discussed the relationship of the .bashrc file to your overall environment. Write a script that sets an environment variable called “MY_OS” to the specific version of the operating system loaded in your machine. You cannot hardcode the operating system version. You must get this from the system so that your script can run on any Linux machine. You also need to set MY_PROC to the model name of the processor that your system is using (e.g., Intel Xeon). Again, this must be done in a machine-independent manner and work on any Linux system.
This script must also export this variable back to your root shell. Specifically, I should be able to do the following:
(1) login
(2) run your script (e.g., sh my_script.sh)
(3) echo $MY_OS
(4) echo $MY_PROC
and see the information. Alternately, I could embed this script in your .bashrc file.
This task was challenging due to issues with differing commands and flags across Linux machines. My computer is a Mac so normally I could just fin the OS and processor by using the uname command and throwing the –s (for OS) or the –p (for processor) flags. An example of this is shown below.
[image:]
However, as I learned through research on the Internet, as well as trial and error, although uname is a command for Ubuntu, it does not have the same flags as in Mac. There were other commands that also could be used on either system in order to find this information out but it was unclear as to how to find this information using one command that would work on both systems. The processor flag was still the same, so the trouble then was obtaining the OS.
By teaming up with Claire, we were able to determine that uname –a shows all the information on both systems, and then we were able to use awk in order to obtain the correct OS for both systems. The shell script that I wrote is below. It exports both MY_OS and MY_PROC as environment variables. MY_OS was obtained by using uname –a to gather all of the information about the system and then piping it to awk in order to isolate just the OS. MY_PROC was just gained by using uname –p. These were then echoed out.
[image:]
An example of what uname –a outputs:
[bookmark: _GoBack][image:]
As I mentioned before, I teamed up with Claire in order to make sure that the script would work on her Ubuntu machine as well. Here is a snippet of her code from when she does uname -a:
[image:]

image2.png
& bash-3.2% cd ece_3822_data
bash-3.25 1s
data_veo

image3.png
0ash—3.£3 1S
data_voo

bash-3.2§ cd data_veo

bash-3.2§ 1s
#files. txt#

book_03
book_04
bash-3.26 _

book_05
book 06
book_07
book_08
book_09
book_10

book_11
book_12
book_13
book_14
book_15
book_16

book_17 files.txt
book_18 Uist_of_files
book_19

data_ve.tar.gz

file.txt

files. list

image4.png
+/book_00/00007846_20130208/BLon_Glayds/eg_80. txt
+/book_00/00007846_20130208/BLon_Glayds/eg_01. txt
+/book_00/00007846_20130208/Czerniak_Clelia/eg_00. txt
+/book_00/00007846_20130208/Czerniak Clelia/eg_01. txt
+7book. 784620130208/ Fy fe_Zane/eg_00. txt.
+7book. 846_21 8/Fyffe_zane/eg_01.txt
+7book. 7846_20130208/1 ida_Ruthann/eg_00. txt
+7book. 7846_20130208/1 ida_Ruthann/eg_01. txt
+7book. 784620130208/ Lopaz_Mar ianna/eg_00. txt.
84620130208/ Lopaz_Mar ianna/eg_01. txt.
784620130208 /Noor i_Johnie/eg_0. txt
+7book_00/00007846_20130208/Noor i_Johnie/eg_01. txt.
+7book_00/00007846_20130208/Rosenbush_Eijah/eg_0. txt
+7book_00/00007846_20130208/Rosenbush_Eijah/eg_01. txt
7846_20130208/Sumer ix_8lanch/eg_00. txt.
7846_20130208/Sumer ix_8lanch/eg_01. txt.
846_21 8/Tracee_Gellatly/eg_0. txt
784620130208/ Tracee_Gellat ly/eg_01.txt.
-/book_00/00007846_20130208/Yarrito_Therese/eg_80. txt
+/book_00/00007846_20130208/ Yarrito_Therese/eg_81. txt
+/book_00/00007858_20130304/BLanke_Felipe/eg_88. txt
+/book_00/00007858_20130304/Blanke_Felipe/eg_01. txt

image5.png
TR AN
bash-3.2§ find . ~type | grep 200705[01-30] >pl. txt,

image6.png
woedy B Lt

THRE T 1 3TER R STUINS

- SR

bash-3.25 1s
pfiles.txts book 05 book_11 book_17 files.txt
book_00 book_06 book_12 book 18 Uist_of_files
book_01 book_07 book 13 book_19 PLtxt
bo0k_02 book_08. book 14 data_v0o.tar.gz

book_03 book 69 book 15 filertxt

200k_04 book 10 book 16 Files. list

bash-3.2¢ _

image7.png
- /book_18/00000405_20070516/Edra_Gosz/eg_01. txt
- /bo0k_18/00000405_20070516/G11ders eeve_Francoise/eg_00. txt

16/Gilders Leeve_Francoise/eg_o1. txt
70516/ Jewel1_Dipanf ilo/eg_0. txt
70516/Jewe 11_Dipanfilo/eg_1.txt
70516/Kalert_Chantay/eg_0. txt
70516/Kalert_Chantay/eg_01. txt
70516/Mallari_Wallace/eg_00. txt
70516/Mallar i_Wallace/eg_01. txt
16/0zaeta_Rita/eg_00.txt
70516/0zaeta_Rita/eg_01.txt
70516/Sant i Llo_Lynwood/eg_00. txt
70516/Sant i 11o_Lynwood/eg_01. txt
. /bo0k_18/00000405_20070516/ Theriault_Jeanene/eg_00. txt
- /book_18/00000405_20070516/ Theriault_Jeanene/eg_01. txt
- /book_18/00001899_20070514/Brazie_Moshe/eg_00. txt
/bo0k_18/00001899_20070514/Brazie_Moshe/eg_01. txt
. /book_18/00001899_20070514/Denniston_Kraig/eg 0@.txt

image8.png
bash-3.2¢ find . -type f|grep 200705[01-30] |xargs grep -iL 'spike' |xargs grep
-iL ‘sustained' >pi2.txt

image9.png
S - 2que L/eg_01. txt
~7book 18/00000405_20070516/Deneui_Kerstin/eg_
7book_18/00800405_20070516/Dencui_Kerstin/eg_01. txt
< 7book_18/00000405_20070516/Edra_Gosz/eg_
+7book_18/00000405_20070516/Edra_Gosz/eg_01. txt
< 7book_18/00000405_20070516/G der s Leeve_F rancoise/eg_
7book_18/00000405_20070516/Gilders Leeve_Francoise/eg_01. txt
< 7book_18/00900405_20070516/Jewe1_Dipanilo/eg_00. txt

< 7book_18/00000405_20070516/Jewe 11 _Dipantilo/eg 1. txt

- 7book_18/00600405_20076516/Kalert Chantay/eqg_00. txt

image10.png
bash-3.2¢ find . —type f|grep 200705(01-30] |xargs grep -iL 'spike’ |xargs grep
“i sustained' | we -1

167
bash-3.2$ []

image11.png
ash-3.2% 1s

lata_test
bash-3.25 cd data_test
ash-3.25 1s

1_20070501 1_200705¢
sash-3.25 cd 120070501
ash-3.25 1s

Srown_johnnie Smith_Jane
ash-3.25 cd ..

ash-3.2§ cd 120070502
ash-3.25 s

Sond_James Bond_John
ash-3.25 cd ..

sash-3.25 cd 120070603
ash-3.28 s

3lack_Johnny Page_johnn
ash-3.2¢

120070603

Smith_John

image12.png
L, roned

1_20070501 120070502 1_20070603
bash=3.25 find . ~type f |wc -1
11

bash-3.28 _

image13.png
bash-3.2¢ find . ~type f | grep 200705(01-:
9

image14.png
bash-3.2¢ find . -type f | grep 200705[01-30] |xargs grep -iL 'spike’|wc -1
5

image15.png
Ixargs grep -iL 'spike'| xargs |

Smith_John/eg_02.txt
d . ~type f |grep 200705[01-30] |xargs grep
tained” |we -1

L spike’| xargs

image16.png
bash-3.2¢ find . ~type f |grep -i 'John®
- 7book_00/00000684_20136208/Nop_Johnnie/eg_00. txt

< 7book_00/00000684_20136208/Nop_Johnnie/e_01. txt

< 7book_00/00001737_20136211/Noanon_Johnathan/eg_00. txt
< 7book_00/00001737 20136211 /Noanon_Johnathan/eg_01. txt
<700k 00/00003310_20130208/Noorda_Johnette/eg_00. txt
<700k 00/00003310_ 8/Noorda_Johnette/eg_01. txt
7b0ok_00/00004256 20136208 /Noaney_John/eg_00. txt
 7book_00/00004256 20136208 /Noaney_John/eg_01. txt

< 7book_00/00004532 20130208 /Noordan_Johnie/eg_00. txt

. 7book_00/00604532_2613208/Noordan_Johnie/eg_01. txt

image17.png
Dogh-J.29 [TinG & =type ¥ |gFep =L JONA " Spl.txt
pash-3.2¢ find . —type f |grep —i 'John' >p2.list

image18.png
2§ Tind . -type T| grep -1 "John®
-/1_20076501/Brown_johnnie/eg_01. txt
-/1220076501/Brown_johnnie/eg_82. txt
-/1220076501/5mith_John/eg_81. txt
-/1220076501/Smith_John/eg_82. txt
-/1220076562/Bond_John/eg_81. txt
-/1220076562/Bond_John/eg_82. txt
-/1220070603/Black_Johnny/eg_81. txt
./1_20070603/Page_johnn/eg_@1. txt

image19.png
bash-3.2¢ cd 120070501

bash-3.2§ cd Brown_johnnie

bash-3.25 we —c eg_01.txt
6 eg_o1.txt

bash-3.25 we ~c eg_02.txt
10 eg_02.txt

image20.png
bash-3.2% sh 2p.sh 2p.list

ile: ./1.20078501/Brown_johnnie/eg_81.txt Chars 6 Number of Files: 1
/1220070501 /Brown_johnnie/eg_82. txt Chars: 10 Total Chars: 16 Number of Files: 2
-/1220070501/Snith_John/eg_81.txt Chars: 17 Total Chars: 33 Number of Files: 3
/1220070501/5nith_John/eg_82. txt Chars: 13 Total Chars: 46 Number of Files
+/1220070562/Bond_John/eg_01. txt Chars: 6 Total Chars: 52 Number of Files: 5
+/1220070502/Bond_John/eg_02. txt Chars: 11 Total Chars: 63 Number of Files: 6
+/1720070603/Black_Johnny/eg_01. txt Chars: 16 Total Chars: 79 Number of Files
/1720070603 /Page_johnn/eg_01.txt Chars: 16 Total Chars: 95 Number of Files: 8
bash-3.25 _

image21.png
_U/bin/bash
Zount=0
totalChars=
* read —r line || [-n “sline®
4(cat $line| we -c)*
totalChars=s((totalCharsschars))
count=$((count+1))
" File: $line Chars: Schars Total Chars: $totalChars Number of Files: \
scount
done < “41

image22.png
+/book_19/00003649_20040306/Gof fe_Johna/eg_01.txt Chars: 1095 Total Chars: 917400 Number of Files: 620
~7b0ok_19/00003953_20040321/Gof redo_Johnie/eq_00. txt Chars: 1041 Total Chars: 919341 Number of Files: 621
7000k 19/00003053 20040321/ o redo_Johnie/eq_01. txt Chars 920436 Nunber of Files: 622
7000k 15/80004046_20040321/Gof Finet_Johnetta/eg_00. txt Chars 921781 Nunber of Files: 623
<7000k 19/00004046_20040321/Gof finet_Johnetta/eq_01. txt Chars: 1095 Total Chars: 922676 Number of Files: 624
7000k 19/00005701_20040121/Gof fnan_Johnette/eg_a0. txt Chars 924376 Nunber of Files: 625
7000k 19/60005701-20040121/Gof fnan_Johnette/eq_1. txt Chars 925471 Number of Files: 626
~7book_15/00005990_20040222/ Pappajon_Tabitha/eg_00. txt Chars: 1486 Total Chars: 926957 Number of Files: 627
7000k 19/00005990_20040222/ Pappajohn_Tabitha/eg_01. txt Chars: 1763 Total Chars: 928720 Number of Files: 628
7000k 19/00006383 20670106/ Goewey._Jon/eg_06. txt Chars 629
7000k 19/00006383 20670106/ Goewey_John/eg_01. txt Chars 630
7000k 19/00006801_20040208/ Gof fney_Johnie/eg_08. txt Chars
<7000k 15/00006801_20040208/ Gof fney _Johnic/eg_01. txt Chars
7000k 15/00067133 20101208/ Gogel_Jahnsie/eg_00. txt Chars:
~7book_15/00067133 20101208/ Gogel_Johnsie/eg_01. txt Chars:
7000k 19/00008394_20040120/Cof_John/eg_00. txt Chars: 2917 Total Chars
4 20040120/Got{ John/eg_01, txt Chars: 1095 Total Chars:
8723.20101221/Gof f1gan_Johnathon/ e 1471 Total Chars
8723.20101221/Gof figan_Johnathon/eg_01. txt Chars: 1035 Total Chars;
140307 /Gofnan_Johnna/eg_00. txt Chars: 1817 Total Chars: 944190 Number of Files: 639
140307 /Gofnan_Johnna/eg_01,txt Chars: 1095 Total Char:
146227 /Gofarth_Johnnie/eg_00. txt Chars: 1162 Total Chars:
46227 /Gotar th_Johnnie/eg_01. txt Chars:

image23.png
bash-3.2% we -1 p2.list
642 p2. List
bash-3.2§ _

image24.png
Darwin
bash-:
1386

.25 unane -p

image25.png
[MY_0S="$(uname ~a| awk ‘{p: sn)');

| MY_PROC="$(uname -p)"
My 05 is sMY_0S
.My Proc is $HY_PROC

image26.png
bash-3.2¢ unane -a

Darwin MIDMacBookAir. local 14.5.0 Darwin Kernel Version 14.
9~1/RELEASE X85_64 x86_64

bash-3.28 []

3 PDT 2015; root:xnu-2782.4

image27.png
clairegubuntu:~$ uname -a

Linux ubuntu 3.19.6-28-generic #30-Ubuntu SMP Mon Aug 31 15:52:16 UTC 2015 1686 1686 1686 GNU/Linux
claire@ubuntu:~$ uname -a | awk '{print $4}'

#30-Ubuntu

image1.png
Last login: Wed Sep 23 13:16:06 on console
-bash-3.2¢ bash

bash-3.2¢ pwd

fUsers/eniliedoyle

bash-3.2¢ _

