ECE 3822	EXAM NO. 1	Fall’2015
[bookmark: _GoBack]ECE 3822: SOFTWARE TOOLS FOR ENGINEERS
Exam No. 1: Rework
Daniel J Douglas
Problem No. 1: The text database we provided in class has a directory structure of the form:
data/book_07/00009869_20040409
where “00009869” represents the subject ID, and “20040409” represents the date. For all the sessions that occurred in the year 2007 between May 1 and May 30, and count the number of text files for which the word “spike” and the word “sustained” occur at least once. Note that your solution must be case insensitive.
Original solution:
$ grep -irlw spike | xargs grep -irlw sustained | grep -Ev '*/*_20070530/*' | grep -E '*/*_200705../*' | wc -l
1
$
Our original solution performs ‘grep’ on all text files in the database, filtering out the unwanted date ranges afterward. This is computationally inefficient. By filtering our list of files for the desired dates first, we greatly reduce the amount of files grep has to process. We also allow our revised solution to contain partial matches of the search patterns “spike” and “sustained”. The revised solution is as follows:
$ find -type f -iname "*.txt" | grep -i ".*_200705.*" | grep -v ".*_20070531.*" | xargs grep -il "spike" | xargs grep -il "sustained" | wc –l
3
$
Our revised solution first makes a list of all text files in the database. This list is filtered for the desired date range and the resulting text files are searched for our string pattern. This pipeline is more efficient than our original solution. The result is 3/200,000 matched files.
Problem 2: For the text database, generate a list of filenames whose full pathname contains the name “John”. Write a shellscript that loops over this list and counts the number of characters in the file. Your shellscript should output each filename as it is processed, the number of characters in the file, and a summary that shows the total number of files processed and the total number of characters.
Original Soulution:
find -type d -nowarn \(-iname "*_john" -or -iname "*/john_*" \) -exec find {} -type f -iname "*.txt" \; > list.txt
#!/bin/bash
Loop over list of files in $1 and count characters in each file
#
xargs wc -m <$1;
Report number of files processed
#
fp= wc -l <$1 | tr -d '\r\n';
echo "$fp files processed";
Our original solution does not account for pathnames containing partial matches of the string “John”. This reduces the number of matches passed into our list of files to be processed. Further, our orginal solution does not fulfill the requirement the each file report be printed as it is processed. To produce a revised solution, we back away from ‘xargs’ and process the file list using a ‘while read’ loop for our shell script.
We first build a more complete list
$ find -type d -iname "*john*" -exec find {} -type f -iname "*.txt" \; > list.txt
$ more list.txt | tail -10

./book_09/00006404_20041016/Famulare_John/eg_01.txt
./book_09/00006404_20041016/Famulare_John/eg_00.txt
./book_09/00002345_20070103/Fang_Johnny/eg_01.txt
./book_09/00002345_20070103/Fang_Johnny/eg_00.txt
./book_09/00007912_20070104/Fancher_Johnette/eg_01.txt
./book_09/00007912_20070104/Fancher_Johnette/eg_00.txt
./book_09/00007173_20070211/Chrisjohn_Lorena/eg_01.txt
./book_09/00007173_20070211/Chrisjohn_Lorena/eg_00.txt
./book_09/00007237_20041016/Familia_John/eg_01.txt
./book_09/00007237_20041016/Familia_John/eg_00.txt
Our revised script is assembled as follows
$ more ccif

#!/bin/bash

Loop over list of files in $1 and count characters in each file
while read line; do
 nfile=`expr $nfile + 1`;
 nchar=`wc -m $line | awk '{print $1}'`;
 tchars=`expr $tchars + $nchar`;
 printf '%d\t%s\n' $nchar $line
done < $1
echo $nfile "files processed";
echo $tchars "total characters";
This script, ‘ccif*’, instead of using ‘xargs’, reads each file in a loop. This really is just hardcoding some of the work xargs did for us, with the added benefit that each file report can be written to sdout as it is processed. Also, the totals for #files and #characters are handled a bit more professionally. When we run our script, we see it behaves similarly to our old one
$ ccif list.txt | tail -10
1717 ./book_15/00002883_20040820/Bolerjack_John/eg_01.txt
1343 ./book_15/00002883_20040820/Bolerjack_John/eg_00.txt
1717 ./book_15/00002050_20040920/Boles_Johna/eg_01.txt
1219 ./book_15/00002050_20040920/Boles_Johna/eg_00.txt
1892 ./book_03/00008501_20000111/Pettijohn_Clarence/eg_01.txt
1203 ./book_03/00008501_20000111/Pettijohn_Clarence/eg_00.txt
1913 ./book_03/00001267_20000130/Pettyjohn_Claudine/eg_01.txt
1054 ./book_03/00001267_20000130/Pettyjohn_Claudine/eg_00.txt
644 files processed
953566 total characters
$

Problem 3: We have discussed the relationship of the .bashrc file to your overall environment. Write a script that sets an environment variable called “MY_OS” to the specific version of the operating system loaded in your machine. You cannot hardcode the operating system version. You must get this from the system so that your script can run on any Linux machine. You also need to set MY_PROC to the model name of the processor that your system is using (e.g., Intel Xeon). Again, this must be done in a machine-independent manner and work on any Linux system.
This script must also export this variable back to your root shell. Specifically, I should be able to do the following:
(1) login
(2) run your script (e.g., sh my_script.sh)
(3) echo $MY_OS
(4) echo $MY_PROC
and see the information. Alternately, I could embed this script in your .bashrc file.
Original solution:
#!/bin/bash
Export OS version to variable $MY_OS
#
echo "export MY_OS=\$(uname -or)" >> ~/.bashrc
Export processor name to variable $MY_PROC
#
echo "export MY_PROC=\$(lscpu | grep -i 'model name' | sed 's/.*:\s*//')" >> ~/.bashrc
Our original script needlessly overwrites the ~/.bashrc file. It is only required for these varibles to be created within the current shell, and possibly sourced to add to the root shell. It also adds the drawback that our script increases the size of .bashrc each time it is run. This is very poor practice, and realistically such a script is more of a ‘one-off’ solution and not readily executable. Cutting out the uneeded code, we get our revised solution shown below.
#!/bin/bash

Export OS version to variable $MY_OS
export MY_OS=`uname -or`

Export processor name to variable $MY_PROC
export MY_PROC=`lscpu | grep -i 'model name' | sed 's/.*:\s*//'`
Our revised script can be run as many times as needed, since in merely overwrites the environment variables we made. Sourcing this script will run the lines without creating a new shell, and bring the variables into the root environment.
$ source vinf
$ echo $MY_OS; echo $MY_PROC
3.19.0-15-generic GNU/Linux
Intel(R) Core(TM) i7-3612QM CPU @ 2.10GHz

