T.Castelli: EX # 01	Page 5 of 2
[bookmark: _Ref49482707]DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Exam Rework No. 01:
Exam 01 Rework
submitted to:
Professor Joseph Picone
ECE 3822: Software Tools for Engineers
Temple University
College of Engineering
1947 North 12th Street
Philadelphia, Pennsylvania 19122

September 25, 15
prepared by:
Tyler Castelli
Email: tue63272@temple.edu

[bookmark: _Ref49478891]Problem
This exam required three tasks be done:
1. Find all sessions that occurred between May 1 and May 30 2007 and count the total number of files that have both the words spike and sustained occur at least once.
2. Generate a list of files that contain the name ‘John’ in the file path and write the output to a file. Then iterate trough each of these files and count how many characters are in each file and how many characters have been counted in total.
3. Write a script that exports the computer processor model to a variable MY_PROC and the OS version to a variable MY_OS. Make it so that these variables are exported back into the root shell so that is the echo command is used on these variables the computers processor model and OS version with be returned.

[bookmark: _Ref49480580]Approach
For problem 1 I used 3 bash commands, find, grep, and wc. The command used is shown below:
find ./*/*_200705[0-3][0-9]/*/* -type f | xargs grep -E '[Ss]pike.*[Ss]ustained' | wc –l
In this command, the find command sorts out the data and searches only in the directories that fit the given requirements. The key portion of this command is “*_200705[0-3][0-9]”. This portion determines which directories will be included in the search path. The numbers in square brackets ([0-3][0-9]) specify a boundary, and any number that falls within the specified boundary in that character spot will be considered acceptable and will be included within the search path, given al all other restrictions have been met. The next command used is the grep command. This command will recognize certain patterns within the specified file. Since the find command was executed first and is then piped into the grep command with xargs, the grep command will only search through files that make it through the “find filter.” This is because the xargs passes in the results from the pipelined command into the next comman. The grep searches for the patterns “spike” and “sustained” (ignoring case) within the same file. Finally, the wc –l command counts the number of files that contain the matched pattern. In order to check this solution I used an alternate way to search for the path, however I used the same grep command to recognize the patterns. The difference this time is I used the ls command to list the files, then passed this into grep and did a pattern recognition. Both commands yield the same result. The test command used was:
ls ./*/*_200705[0-3][0-9]/*/* | xargs grep -E '[Ss]pike.*[Ss]ustained' | wc –l

For problem 2 I created a script as show below:

Figure 1: Problem 2 script
In this script, I first use the find command to locate all files containing the pattern “John” somewhere in the first name of the patient, and output the resulting file paths to a file named john.txt. I then created two variables csum and fsum to act as sum to hold the total number of characters and the total number of files processed respectively and initialize both to 0. I then created a for loop that iterates through each line in the file and echos the file path, and using the wc command with the –m option, count the characters. Since this also counts the new line characters, I used wc again but with the –l option to get the amount of lines, which equals the number of new line characters. I then subtracted the amount of new line characters from the total character count and echo’d the result. Finally, I increment the file count variable by 1 and echo it, and add the character count to the sum variable and again echo the result. This loop continues until there are no more files to be read.
In order to check this, I created 4 test files: a file containing the file paths of the test files, and three test files. The contents of these files are shown below

Figure 2: File Path Test File

Figure 3: Test files
The first test file uses new lines to make sure the code does not include new line characters in the count. A quick count of the characters in the file and one can see the desired output of the script should be 5 characters in the first file, 6 in the second file, and 10 in the third file, with a total count of 21 characters and 3 total files processed. The result of this test code is shown in the next figure. (The code was altered slightly for debugging and changed back to the original shown in figure 1 for the final result).

Figure 4: Test Results
The test shows that the code gives the desired output.
Finally, for problem 3, I wrote a simple script to find the processor model within a specific file and assign that line to a variable as a string, and then do the same thing for the OS version. In Linux there are directories and files just below the root directory that every distribution has. These files give information about the computer, OS, and more. By accessing these files I was able to find the processor model and OS version. The script written is shown below.

Figure 5: Question 3 Script
The commands for assigning the variables were simple and the idea is the same for both the OS version and the processor model. I opened the files that contain the information needed, used grep to find the line with the details that I want, and output that line to the respective variable. Since I found the information using the system files this should work on most Linux distributions. I the used the export command to export the variables to the shell environment. In order to get the variables to be environment variables, you have to source the script when running it. This is done by using either source or a “.” when running the script. This allows any variable exported from within the script to be sourced to the root shell and become environment variables.
Results
My result for problem 1 was a low number. The figure below shows the output of both the original method and the alternate method.

Figure 6: Problem 1 Result.
As seen by the figure there are only 3 files that contain both the words “spike” and “seizure”.

The results for problem 2 can be seen in figure 7

Figure 7: Problem 2 Result
In this figure we see that there are 622 total files whose file path contain the name “John” in some form. Each files was processed and the characters were counted, amounting to a total of 909,333 total characters contained within the files in this dataset.
Finally, for the results of problem 3, we see the result of running the script using source in figure 8:

Figure 8: Problem 3 Results
Again, since the processor model and OS version were found using the Linux system files, this method should work on most Linux distributions. By sourcing the script when running it the exported variables become environment variables and can be accessed anywhere. An alternative method would be to run this script from the .bashrc file (running the script as source here as well), which would set these variables as soon as a terminal sessions starts.
Analysis
[bookmark: _GoBack]This exam reviewed and explored more deeply many of the topics covered in class thus far. The first two problems were very similar to problems given in previous assignments, but the third problem was fairly new and required a bit of research. When a bash script is called, a child shell is generated while that script is running and is terminated when the script ends. This makes it so that any variables created for the script are terminated as well once the script ends. Since the child shell has no access to the parent shell, exporting alone will not make the variables global because exporting makes variables accessible to subsequent child shells, but not parent shells. By sourcing the script, we run it in the top level shell, therefore when the variables get exported they become available to all child shells of the source or root shell as well as the root shell itself.
ECE 3822: Software Tools for Engineers	September 25, 15
image4.jpeg
tcastelligtcastelli-virtualbox: sh exe1_p2.sh test.file
. [tester1.txt

Characters in File:

5

Files proccessed:

1

Total characters proccessed:

5

. [tester2.txt

Characters in File:

6

Files proccessed:

2

Total characters proccessed:
11

. [tester3.txt

Characters in File:

10

Files proccessed:

3

Total characters proccessed:
21

tcastelli@tcastelli-virtualbox: fl

image5.jpeg
#1/bin/bash

MY_PROC=S$(cat /proc/cpuinfo | grep 'model name')
MYy_0S=$(cat /etc/*-release | grep 'DESCRIPTION')
export MY_PROC

export MY_0S

image6.jpeg
tcastelligtcastelli-virtualbox: find ./*/*_200705[0-3][0-9]/*/* -type f

xargs grep -E '[Ss]pike.*[Ss]ustained’ | wc -1

3

tcastelligtcastelli-virtualbox: ls ./*/*_200705[0-3][0-9]/*/* | xargs grep
-E '[Ss]pike.*[Ss]ustained’ | wc -1

3

tcastelli@tcastelli-virtualbox:

image7.jpeg
Total characters proccessed:
903131

. /book_19/00008723_20101221/Goffigan_Johnathon/eg_1. txt
Characters in File:

1085

Files proccessed:

618

Total characters proccessed:

904216

. /book_19/00009297_20040307/Gofman_Johnna/eg_00. txt
Characters in File:

1795

Files proccessed:

619

Total characters proccessed:

906011

. /book_19/00009297_20040307/Gofman_Johnna/eg_01. txt
Characters in File:

1085

Files proccessed:

620

Total characters proccessed:

907096

. /book_19/00009862_20046227/Goforth_Johnnie/eg_00.txt
Characters in File:

1152

Files proccessed:

621

Total characters proccessed:

908248

/book_19/00009862_20046227/Goforth_Johnnie/eg_01.txt
Characters in File:

1085

Files proccessed:

622

Total characters proccessed:

909333

tcastelli@tcastelli-virtualbox: fl

image8.jpeg
Terr
tcastelligtcastelli-virtualbox: echo SMY_PROC

inal

tcastelligtcastelli-virtualbox: echo SMY_0S

tcastelli@tcastelli-virtualbox: source ex01_p3.sh
tcastelli@tcastelli-virtualbox: echo $MY_PROC

model name : Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz
tcastelli@tcastelli-virtualbox: echo $MY_OS
DISTRIB_DESCRIPTIOI Ubuntu 15.04"
tcastelli@tcastelli-virtualbox: fl

image1.jpeg
o emacs@tcastelli-virtualbox
File Edit Options Buffers Tools Sh-cript Help

o B 8 Bsve &udo

#1/bin/bash

Find ./book*/*/*'John'*/* > john.txt
#File=51

fsun=6;

csun=6;

for f in $(cat john.txt); do
echo Sf
echo 'Characters in File: '
count=$(cat $f | wc -m)
count2=S(cat $F | wc -1)
countFinal=$((count-count2))
echo $countFinal
Fsun=$((Fsum+1))
echo 'Files proccessed: '
echo $fsum
csun=$((csum+countFinal));
echo 'Total characters proccessed:
echo Scsum
printf "\n"

done

image2.jpeg
tcastelligtcastelli-virtualbox: more test.file
./tester1.txt
./tester2.txt
./tester3.txt

tcastelligtcastelli-virtualbox:

image3.jpeg
tcastelli@tcastelli-virtualbox: more testeri.txt
ab

cde

tcastelli@tcastelli-virtualbox: more tester2.txt
fghijk

tcastelli@tcastelli-virtualbox: more tester3.txt
abcdefghtj

teastelligtcastelli-virtualbox:

