ECE 3822	FINAL EXAM	Fall’2015
Name:

	Problem
	Points
	Score

	1
	40
	

	2
	40
	

	3
	20
	

	Total
	100
	

Notes:
(1) Please see the instructions sent in email to the class for how to submit your work.
(2) You are allowed to use all the web resources at your disposal except other human beings (and talking to someone via a chat line counts as an interaction with a human being
(3) In addition to providing your code, explain your solution to each problem in the comments in your code, especially if you want partial credit.
(4) You must rsync your solutions to electrodata using the subdirectory name “ex_04.”
Problem 1: You must code this problem in Python.
Cut and paste the text shown below into a file called “foo.txt”:
<--- Text Start Here -->
Here is some random text that has spelled out numbers in the text. For example, I can say thirty three or thirty-three, fifteen or zero oh. I could also say this person has zero chance of being successful – was that a number? Your job is to write a program to compute the sum of the squares of all the spelled numbers in this text. I would begin by highlighting all the numbers that appear here, such as three, and then adding up the squares manually so you know the answer.

Note that this text could also have addresses in it. For example, John Smith lives at 333 So. Main Street. It could have zip codes such as 19122. But you only need to find spelled numbers, like seven, and sixty-seven. They can appear as mixed case or uppercase, such as Seven or SEVEN.

Isn’t text processing fun... especially when we realize that phrases like World War II, section eight and double aught three can pose problems? I can also have “three” and “three!”.
<--- Text Ends Here -->
Write a Python script to add up the sum of the squares of the numbers that are spelled out. For example, you must convert “seventy seven” to the number “77”. You can ignore any numbers that appear as numeric – focus only on the numbers that are spelled as words.
To keep this simple, you must handle the numbers in the range [-99,99]. Everything else can be ignored.
Deliver your code in a directory “p01” with one script “foo.py” that I can run by typing “foo.py foo.txt”. You should print each number as you find it and display its converted value. You should then print out the final value of the sum of the squares.
Problem 2: You can use any programming language or set of tools to solve this problem. However, I must be able to run your code from your p02 directory on electrodata:
cd ~picone/rje/ece_3822/<your name>/ex_04/p02;
./foo file1 file2 ...
The filenames can be any path on electrodata.
I must also be able to see your code in a file foo.py, foo.cc, foo.sh, or whatever language you choose to use. Your code must be in one file. Recall that we used a large database of text files in several homework assignments. I will use those files to test your code.
I would like you compute the similarity between all of the files specified on the command line. For example, suppose I specify three files. Your code should output a confusion matrix that is 3x3 and shows the similarity between the files for each element in the matrix. The diagonal elements of this matrix should show high values (very similar). For this problem, we will use a simple approach. Generate a list of unique words in each file and compare these two lists. Do this by looping over all words in one list and adding one to a counter if the word exists on the second list. If your final count is high, the files are similar. If your final count is low, the files are not similar. For those of you who like shell programming, this the equivalent of counting the number of words in one file that appear at least once in a second file.
You must code the algorithm yourself (e.g., you can’t use a Python module for measuring document similarity or push the files through a cloud-based service).
Problem 3: In this problem we are going to test your resourcefulness. You are going to learn how to pass a function pointer in C++. You must code this in C++. You are going to need to Google search how to do this.
Write a function that compares two numbers and returns: +1 if a > b, 0 if a == b, and -1 if a < b. Call this function:
long ece3822_compare(float a, float b);
Next, write a sort function that sorts an array in ascending order:
bool ece3822_sort(float* a_sorted, float* a, long len, <some magic>ece_3822_compare);
Then write a main program that calls this function:
float x[4] = {27, 10, -1, 5};
float y[4];
ece_3822_sort(y, x, 4, <some magic>);
print the values of y to demonstrate it is properly sorted... (in this case {-1, 5, 10, 27})
The array y should contain the sorted values of x.
You MUST pass your compare function as an argument to the function ece3822_sort, and your sorting algorithm must use your compare function. This way, you can easily change the sort behavior by changing the definition of your function.
You cannot use library functions for this – you must code this yourself. Your sort algorithm does not have to be efficient – simple looping will do. The goal of this problem is to teach you how to pass function pointers, not how to write an efficient sort function.
[bookmark: _GoBack]In a directory p03, provide a Make file, and one file, foo.cc, containing your code. I should be able to do “make; foo” and see your results. No need to split the code into multiple files.

