J. Throne: EX # 01	Page 4 of 2
[bookmark: _Ref49482707]DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Homework Assignment No. Exam1:
Exam 1 Rework
submitted to:
Professor Joseph Picone
ECE 3822: Software Tools for Engineers
Temple University
College of Engineering
1947 North 12th Street
Philadelphia, Pennsylvania 19122

September 30, 2014
prepared by:
Joseph Throne
Email: tud24646@temple.edu

1) The point of the first question of the exam, was to search through all of the files on the database that was given to us in the beginning of the semester, and find files of a specific name. The specifications were the last name needed to have at least 3 vowels in it, and the first name must be at least 5 characters long. The command that I used for this is “find . –type d –name “*[AEIOUaeiou] *[AEIOUaeiou]* [AEIOUaeiou]*_?????*” | wc –l” (ignore white space between the *[AEIOUaeiou], word wants to make the writing bold if there is no space. Also ignore the outer most quotations). I used the find command because it is the most efficient way, outside of writing a script, to solve this problem. The ‘.’ Tells the command to search in the current working directory. The ‘-type d’ tells the find command to search for only directories. ‘-name’ tells find to look at the name of every directory, and to match it to the arguments inside the quotation marks. “*[AEIOUaeiou] *[AEIOUaeiou]* [AEIOUaeiou]*_?????*” says that the name will have some characters that we don’t care about with the *, then by typing [AEIOUaeiou] three times it tells the command that we need three occurrences of a vowel before the next ‘_’. The next part of the command ‘?????*’ says after the underscore we need at least five characters, and if that criteria is meet we don’t care what the rest is so expand it with the final wild card ‘*’. That is how I search for the specific files, and by using the pipe option into ‘wc –l’ the command will count each instance when the find command finds a directory that meets the criteria that I described previously. My final result was 40054, and that could be seen in the screen shot below.
[image:]
2) The second question asks us to write a short bash script that to loop over all of the *_eg_00.txt and finds the amount of byte each file is, and adds up the total amount of bytes from all of the files. After getting a total number of bytes from a script we then had to compare that to the amount we get with the du command. My script is shown in the figure below:
[image:]
I first use a similar find commnad from the first part of the test, but in this case I only search for a name of a file ending in eg_00.txt. This will eleminate any file with the 01 ending, which is what is asked for in the question. Also the ‘.’ Before it has the find only look in the current directory, which in my case is book_01 of the database. My find command then writes all of these file pathes to a text file called try2.txt. Using the newly generated text file I create a while read line loop, which will read each line of the file line by line until the end of the file. The next statement “do” does it exactly what it sounds like and tells the script to do the next lines of code as long as the end of the file has not been reached. The way I went about getting the data of each directory was by doing the ls –l command, and this prints out a couple of pieces of information including the size of the file in bytes, which is the fifth column of the output. I needed only the file size so I piped the output of ls –l to the awk ‘{total += $5}’ which says take the fifth element of the output and save it to the variable total. By putting all of that inside of y` ` I take the output of the awk command and save it into my variable y, this is important because without the ` ` the command would not execute how it normally wourl. Then I add the value of y to the value of x, which I orginally delcare as 0, and this continues to add the new values of y, which are the flie sizes in bytes, to my variable x. Then after every line of my file has been read I echo the value of x and the results were:
[image:]
The next step of the question was to preform the du command on the same text files and compare the results. I found that on the mac OS there is no –b option to the du command, which meant I could not use this to accurately get the file size. I read a little more on blocksizes and also found that I can change the default block size, so I tried to make it of size one, that way one block would be one byte, but it is an illegal option on the mac OS, which is shown below:
[image:]
I tried there to set the BLOCKSIZE=1 and run the du command on my generated try2.txt file, but my system told me that the minimum blocksize is 512, so that result does not accurately show the file size, because if a file is say for example 513 bytes, du counts it as 2 blocks. If we assume each block is full that means 2 blocks is 1024 bytes, which would mean there are 511 bytes the system is counting, that are not existent. In light of this I decieded to use a different command, which can be seen below:
[image:]
Here I again find all the files ending in eg_00.txt, and pipe those values into xargs stat –f%z. Stat is a command that can be used for a lot of different things, and the one I am using it for is the file size. The –f tells it to follow a format, and the %z says that the format is the size of the file in bytes. I then pipe that value into awk again, and put it into a recursive adder, which adds the new value to the old value each time. The $1 tells awk to take to first column as the output, which is the size of the file in bytes. The last part of the command END{print sum} will print the value of sum after the rest of the command is done, and as we can the answer is the same as what I got from my script.
3) The final question of the exam is us to shh into electrodata and run a bash shell, and then find the processes running underneath out names. I did that by typing the command ps –fx. This command shows all of the processes running under my username in a chart form. I can easily see which is the parent process from this chart. The results are shown below:
[image:]
From this picture I can see that the sshd: tud24646@pts/0 is the parent process. I can also tell from the PIDs that the bash commands below it are child processes because they are very similar only being a few numbers apart. The final part of the question asks us to kill the process that will log us out of electrodata, and I did that by typing kill 34115, and the results are shown below:
[image:]
To see that there are no bash processes running I logged back in and ran the ps –fx command again. As we see in the figure below there are only two processes running. One of which is from me logging into electrodata, and underneath that process is the ps -fx command that I just ran to show this view. The other is a process I have running for homework 4, I did not kill that process because it would ruin my output file for that homework.
[bookmark: _GoBack][image:]
ECE 3822: Software Tools for Engineers	September 30, 2014
image3.png
) e B Wi 42 3
7688004
bash-3.26 _

image4.png
bash-3.2¢ BLOCKSIZE=1 du try2.txt
minimum blocksize is 512

image5.png
txt | xargs stat —fiz | awk '{sum+=§1} END {print

image6.png
‘tud24646gelectrodata:~§ ps —fx
Warning: bad ps syntax, perhaps a bogus '~'? See http://procps.sfanet/faq.html

PID
34115
34116
34214
34301

7950

7951
33164
25325
33491

?

STAT

s
ss
s
Re
ss
s
s
ss
s

TIME COMMAND
sshd: tud24646epts/0
_ ~bash

_ bash

_ ps —fx

bash —c nohup sh ece_3822.sh >» hw_04_1.out
_ sh ece_3822.sh

_ sleep 1h
bash ~c ./ece_3822.sh
_ sleep 1h

tud24646gelectrodataing.

image7.png
tud24646gelectrodatai~$ kill 34115Connection to electrodata.eng.temple.edu close
d by renote host.

Connection to electrodata.eng. temple.edu closed.
bash=3.2§

image8.png
‘tud24646@electrodata:~§ ps -fx
Warning: bad ps syntax, perhaps a bogus '~'7 See http://procpsssfanet/faqshtnl
PID TTY STAT TIME COMMAND

34531 7 s hd: tud24646epts/0
34532 pts/0 Ss _ -bash
34633 pts/0 R _ ps ~fx

7950 bash ~c nohup sh ece_3822.sh »> hu_94_:
7951 _ sh ece_3822.sh
33164 _ sleep 1h

image1.png
‘bash-3.2¢ find . -type d -name “x[AEIOUaeiou]*[AEIOUaeiou]*[AEIOUaeiou]*_ 77777
I we U
40054

image2.png
1/bin/sh

find . —name "xeq_
FILENAME=try2. txt
x=0

Ext > try2.txt

while LINE
do

y="ls -1 $LINE | awk '{total

$5h0

x=$((x + y))
done < SFILENAME
acho

Exam 1 Rowork

T rraies s,
ey
T

—

e e

