ECE 3822	EXAM NO. 1	Fall’2014
Name:
Jihun Song

	Problem
	Points
	Score

	1
	35
	

	2
	35
	

	3
	[bookmark: _GoBack]30
	

	Total
	100
	

Notes:
1. For this exam you are allowed to open a terminal window on your computer and to interact with the operating system. However, you are not allowed to web surf or Google.
2. Create your solutions in an MS Word document and email it to the instructor at the end of the exam. Use “ECE 3822” in the subject line, and name your attachment using our usual convention of “lastname_firstname_ex01.docx.”
3. In addition to providing your code, explain your solution to each problem.
Problem No. 1: For the database provided in class, count the number of directories (sessions) that have at least three vowels (defined as “a”, “e”, “i”, “o” and “u” to keep things simple) in the last name and at least 5 letters in the first name of their directory name.

find . -name “*[AEIOUaeiou]*[aeiou]*[aeiou]*_?????*” -type d | wc -l
40054
[image:]

For this problem, I had to first relocate to ~/isip to get to my isip file with the book directories in them. Afterwards, the find command is called because “find” searches the directory tree rooted at each given file name by evaluating the given expressions from left to right. Thus, . gives all the directories within the directory I am currently in, ‘-name [pattern]’ gives us the matches to the pattern [pattern], typde d gives us type directories, the pipe character gives us something done on the previous information, ‘wc’ is word count, and ‘-l’ gives us the number new lines that are output. The reason this works is because the find command finds all directories with the name pattern “*[AEIOUaeiou]*[aeiou]*[aeiou]*_?????*” and prints it on a new line. Therefore, by counting the lines, the number of directories with names with at least three vowels and 5 letters in the first name can be found. The regex in the pattern shows as such: ‘*’ gives us any or no character so it can be placed between and around the vowels, the [AEIOUaeiou] gives us vowels both capital and lower case since a name could start with a vowel, the [aeiou] gives us any vowels, and ending that section with a ‘_’ shows that the first name is beginning. This satisfies the “at least 3 vowels in the last name.” In order to get at least five characters in the first name, the ‘?’ is used. This shows that there is an unknown character there but there is definitely a character. So by placing five of these followed by a ‘*’ shows that it will find any first name with at least five characters.

Running the command gives 40054 directories that match this command.

Problem 2: Write a shellscript that loops over all *_eg_00.txt and accumulates the size of the file in bytes. Compare this to the output of the du command and show that they produce the same result. Use only the book_01 data.

#!/bin/bash
﻿find . -name "eg_00.txt" | xargs cat | wc -c

OR

ls -l ~/isip/book_01/*/*/eg_00.txt | awk -F " " '{total += $5} END {print total}'

After running both of these scripts, the answer found was 7688004 bytes for both.
To verify, I did
du -bc */*/eg_00.txt
to which I got 7688004.

I created two different shell scripts, one using the find command and the second using the ls command. I put them in two separate bash files, exam1_1.sh and exam2_2.sh. In order to run them, I typed ‘. exam1_1(2).sh’ and waited for the total to come back.
The first example using find basically uses the functionality of the first problem where it searches for “eg_00.txt” using the find . -name functionality. Afterwards, it is piped to xargs cat which builds and executes command lines from the piped input and concatenates it into one file. Lastly, the word count command ‘wc’ is used with the ‘-c’ parameter to show the total byte count of the characters.
The other method requires using ls -l. This is to list the directory contents using a long listing format. This then takes the files shown by the following address with ‘*’ representing any or no characters. This output alone would give an output :

-rw-r--r-- 1 joe joe 841 Aug 24 01:10 /home/joe/isip/book_01/00009989_20130312/Toothill_Luciano/eg_00.txt

in that format. As you can see, the fifth column shows ‘841' which is the total size of the file. Thus by taking the awk -F “ “ ' {total +=$5}, one can add up all of the file sizes and then print the total using {print total}. The -F parameter is the field separate option which is signified with a space and $5 used to refer to the fifth column. Thus by summing the variable total, one can add up all the file sizes and display it.

Of course, the ‘du’ option is easier to use and I think it is the most useful since it requires less characters and, unlike the find option, can be placed anywhere. du is used to estimate file space usage and b gives it in bytes and c calculates the total. The same answer was found all 3 ways.

Problem 3: When you log into Linux and open a terminal window, a number of process are created under your name. Track down all these processes, list them, and explain how they are related. For those runnin virtual machines, ignore the processes related to the basic virtual machine. Just focus on what happens when you open your first terminal window. Which of these processes would you kill if you wanted to force a logout (but don’t actually try this during an exam!).

﻿In order to do this problem on electro9.eng.temple.edu, we first sshed into it using putty and bash was typed. Afterwards, the following command was used:

ps -ef | grep tuc58102
tuc58102@electrodata:~$ ps -ef | grep tuc58102
root 52269 1375 0 21:22 ? 00:00:00 sshd: tuc58102 [priv]
tuc58102 52457 52269 0 21:22 ? 00:00:00 sshd: tuc58102@pts/0
tuc58102 52458 52457 0 21:22 pts/0 00:00:00 -bash
tuc58102 52594 52458 1 21:24 pts/0 00:00:00 bash
tuc58102 52648 52594 0 21:24 pts/0 00:00:00 ps -ef
tuc58102 52649 52594 0 21:24 pts/0 00:00:00 grep --color=auto tuc58102

ps is a report of the current processes, e selects all processes and f gives full-format listing. This shows every process on the system using standard syntax and, using the pipe and grep, which searches for lines matching a pattern, greps for all the files that have "tuc58102" in the process.
In order to observe what is going on, we can assume that ps shows the PID (process ID) and PPID (parent process ID) in columns 2 and 3. We can see that for the first two rows it shows sshd:tuc58102[priv] with a PID of 52269 and a PPID of 1375 and sshd:tuc58102@pts/0 with PID 52457 and PPID 52269. It is not possible to kill "root" without proper permission so killing the second one with:

kill -9 52457

will automatically halt the program and logout. It produces an error so another way to logout would be to kill the bash shell. By killing -bash (the first bash shell created), the screen exits and closes out. The second bash shell can be killed since it will just lead the user to the original bash shell.

image1.png
joe@joe-VPCWIBFX:~/isip$ find . -name "*[AEIOUaeiou]*[aeiou]*[aeiou]* 77777*" -
type d | we -1
40054

j0e@j 0e-VPCCWIBFX

