Z. Smith: Ex # 01	Page 6 of 6
[bookmark: _Ref49482707]DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Exam 01:
Exam #1 Rework
submitted to:
Professor Joseph Picone
ECE 3822: Software Tools for Engineers
Temple University
College of Engineering
1947 North 12th Street
Philadelphia, Pennsylvania 19122

September 27, 14
prepared by:
Zack Smith
Email: zack.smith@temple.edu

[bookmark: _Ref49480580]Problem 1: Find all directories that have at least three vowels in the last name and at least 5 letters in first name
This problem relies heavily on the find command. We can use find to find all files which meet a certain criteria in a certain directory and its subdirectories. Specifying the –type option will allow us to search only directories (as opposed to also searching for files), and specifying –name allows us to look for specific names of those directories. The –name option also allows us to enter regexes or patterns, so combining all of that, we can get our desired output. Figure 1 shows the basic usage of the find command to the directories which have at least three vowels in the last name and at least 5 letters in the first name.
[image:]
Figure 1 - Finding the directories which match our pattern
For the first name, we can use the wildcard expression ‘?’, which indicates any SINGLE character. By combining them together, we can make a pattern like ‘?????’ which will search for any 5 sequential characters. Next, the wildcard expression ‘*’ means any length string of characters. So, we can combine these two together to get: “?????*”, which means match any string which consists of at least 5 sequential characters. For the last name, we can utilize the brackets to match a specific letter pattern. In our case, we implement [aeiouAEIOU], which matches any of those characters inside the brackets. Combining this with the wildcard *, we get: *[aeiouAEIOU]*[aeiou]*[aeiou]*. What this does is search for something which matches the pattern: Any string of arbitrary length followed by a vowel (Capital or otherwise, [aeiouAEIOU]), followed by another arbitrary length string, followed by a vowel, followed by another arbitrary string, followed by a vowel, followed by any arbitrary string.
An important note is that * matches any string, even those with zero length. In other words any singular vowel will match the expression “*[aeiouAEIOU]”, despite being a string of length 1. Any string of arbitrary length ending in a vowel will match the previous pattern, including a string of just a singular vowel. Another important aspect of this problem is capitalization, which is important for the purposes of find. Without the capital letters in [aeiouAEIOU], the command would neglect the first capital vowel, which results in missing 3,000 files, as seen in Figure 2.
[image:]
Figure 2 - Dropping the capital [AEIOU] leads to missing matches

Problem 2: Write a shellscript that loops over all *_eg_00.txt and accumulates the size of the file in bytes. Compare this to the output of the du command and show that they produce the same result. Use only book_01 data.
There are many different unique solutions to this problem. In order to understand my solution, you must understand the output of ls and du. If you execute an ls –la command, all of the files in the current directory will be printed, along with some useful information. In the fifth column of the output, ls –la gives the size of the file in bytes. So, we can combine the ls command with the find command, and then take the 5th column to get the file size of one file. If we want to do multiple files, we’ll need a running sum, which we can get with awk. Similarly, the du command expresses the file size of a single file in amount of blocks, not in bytes. Using the –b option with du gives us the actual byte output, rather than the block number. Figure 3 shows how we can get du and ls to agree on an output.
[image:]
Figure 3 - Running du and ls on an arbitrary file in my home directory
[image:]As you can see, the first du command returns 1276 – which is directly at odds with ls’ output of 1304576. Using the –b option with du allows us to get the actual file size in bytes, which we can see agrees with the output of ls at 1304576. Since du expresses its number in column 1, we can also use awk to give us the file size in bytes, as shown in Figure 4.
Figure 4 - Combining a simple find command with ls and awk
By using xargs, I can pipe each individual file from find in to ls or du, and then send everything to awk. In the awk program, I sum up the fifth column for ls, and the first column for du, and then print the sum. I can get the same results for both ls and du this way. For verification purposes, we can be a little more creative. First, we can create a generic file list as we have done before using find. An example command would be:
Find ./ -type f –name eg_00.txt > file.list
Next, using a script like the one we wrote in Homework2, we can copy all the files to their own directory, and finally use the built in file manager to check the size of this new directory. The code for copying files from file.list into a subdirectory can be seen in the Appendix. In the case of using our homebrew commands, we find the file list is 7688004 bytes, or 7.68 MB. Figure 5 shows the filesystem’s approximate size of the directory.
[image:]
Figure 5 - Directory which contains every eg_00.txt file's properties
As you can see from Figure 5, the file system believes the directory which contains every eg_00.txt file in book_01 to be approximately 7.7 MB. So, not only do du and ls agree, but the file manager also agrees that the size of the files is approximately 7.7MB.

Problem 3: generate a list of all processes under your name, explain how they are related through process ids, kill the top level process so that all children are killed, also demonstrate that this logs you out and leaves no processes running (do the latter by logging in again and see what is running under your name)
As everyone knows by now, we can use top –l username to get the list of active processes, or use ps –ef along with a grep for your username. In our case, let’s log in to electrodata and use ps –ef along with grep to get the processes currently running. This is shown in Figure 6.
[image:]
Figure 6 - Using ps -ef with grep to get all running processes with my username
As we can see here, there are five processes that I’m running, and one that root is running which mentions me. The second column indicates the PID of the process, and the third indicates the parent process ID. Just looking at it, we can see my ps –ef and grep commands are PID 13903 and 13904, but share the parent ID 3444. Looking at process ID 3444, we see it’s an instance of bash with parent ID 2397. Looking at that parent ID yields another instance of bash, with parent ID 2384. That parent ID is then linked to the sshd process, which has a corresponding root process. If you follow these processes all the way back, you’ll find root calls the sshd command in /bin/, and its parent is the process with a PID of 1, which is /sbin/init. We can graphically represent these connections of parent processes using the ps –fx command, as shown in Figure 7.
[image:]
Figure 7 - A graphical representation of how my running processes are linked.
As you can see, my ps –fx command is a child of an instance of bash, which in turn is a child of an instance of bash, which in turn is a child of the sshd command. Now, we can kill this sshd command and see what happens with the kill -9 command. This is shown in Figure 8.
[image:]
Figure 8 - Result of executing kill -9 with the SSHD PID
Clearly, the sshd command keeps us connected to the server. When we killed the command, we also disconnected from the server, as pictured above. Now, let’s log in and verify that our child instance of bash was deleted.
[image:]
Figure 9 - running ps -ef immediately after re-login
When logging in again, a quick run of ps –ef with grep shows that no child instance of bash is running. Therefore, we can conclude that we destroyed all processes when killing the sshd process.

[bookmark: _GoBack]

APPENDIX
Bash Script for Problem 2:
#!/bin/bash
count=000000
while read line
do
 count_format=$(printf "%06d" $count)
 cp $line ~/book_01_size/$count_format.txt
 count=$[$count+1]
done < $1
ECE 3822: Software Tools for Engineers	September 27, 14
image4.PNG
zack@roboboat: ~/ece_3822/data/tuh_eeg/book_@1% find ./ ~type f -name *eg_00.txt | xargs ls -la | awk
7685004

“{sum+=$5} END (print sum}"
7ess00s
e e SN |

zackeroboboat : ~/ece_3822/data/tuh_eeg/book_01$ find ./ ~type f -name +eg_00.txt | xargs du -b | awk ‘(sums

13 END (print sum}’

image5.PNG
book_01_size Propert|

Basic Permissions Local Network Share

Name: ook 01 size]

! Type: Folder (inode/directory)
1 4,991items, totalling 7.7 MB.

Location: /home/zack

Freespace: 546.9MB

Help Close

image6.PNG
|rud20772Eelectrodat:

lcuazo772
lcuazo772
lcuazo772
lcuazo772
lcuazo772
zoot

ltud20772@electrodat:

2384
2397
344e
13903
13904
Ges29

2529
2384
2397
344e
344e
1375

hooownmodh

—ef | grep tud20772

:37

37

:37

E

:38
:37

00:

00

00:

00:

00

00:

sshd: ©ud20772@prs/0

—pasn

bpash

ps -ef

grep -—color=auto “uii0772
sshd: ua20772 [priv]

image7.PNG
tud20772felectrodata:~% ps -Ix

Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/fag.html

PID TTY STAT TIME cOMMAND
2382 2 s 0:00 sshd: tud207728pts/0
2397 ps/0 Ss 0:00 _ -basn
3444 prs/0 S 0:00 _ pasn
45674 prs/0 R+ 0:00 _ps -fx

tud20772@electrodata:~§ []

image8.PNG
rver unexpectedly c

zoot
cua207720electrodata
Warning: bad ps syntax, pex!
BID TTY
2382
prs/o
prs/o
45874 ps/o

cua20772@e1ectroata:

image9.PNG
Last login: Sat Sep 27 19:4
n.net

Hello World!
tud20772@electrodata:~$ ps —ef | grep tud20772

'8 2014 from pool-108-52-173-117.phlapa.fios.verizo|

oot 40743 1375 0 19:43 2 00:00:00 sshd: ©ud20772 [priv]
.a20772 43688 40743 0 19:43 2 00:00:00 sshd: ©ud207726pes/0
ua20772 43701 43688 6 19:43 prs/0 00:00:00 -bash

L020772 47740 43701 0 19:43 prs/0 00:00:00 ps -ef

©ud20772 47742 43701 0 19:43 pts/0 00:00:00 grep --color=auto Lud20772

cud207728e1ectrodata:~S [|

image1.PNG
zack@roboboat: ~/ece_3§22/data/tuh_eeg$ find ./ ~type d —name "77777%_x[aclouAEIO)
UixLacioul (aciontn | me 1
de207
zackoroboboat: /ece_3822/data/tun_ecg$ find ./ ~type d -name “x[acioUAEIOU][ae.
caqelacdoute 77970 | we o1
Geoss
ackoroboboat ~/ece_3822/data/ tuh_eeg$
o epoboat 2014-09-24 Wed 15:27 0.26 6.53 0.40|

image2.PNG
Zack@roboboat:~/ece_3822/data/tuh_eeg$ find ./ -type d -name "*[aelou]*[aeiou]*[|
setouss. 72704 | we -1

e

Zeckerobovoat ~/ece_1522/data/tun_eegS Find ./ ~type d -name. *s[acioUAEIOVT+TacH
B

7

eckérobovoat ~/ece_1522/data/tun_eegS ind ./ ~type d -name *s[acioUAEIOVI+TacH
IO et P55 | e 1

e

e S]
T & robobont 201i-no-o7 Sat s e oo o s o

image3.PNG
|zack@roboboat: ~$ du db.sqlite3

1276 db.salites

zackeroboboat:~s s -l1a db.sqlite3

~ru-rw-r-- 1 zack zack 1304576 Sep 16 13:05 db.salite3
[zackeroboboat:~s du -b db.sqlite3

1304576 db. salite3

|zack@roboboat: ~§

