S. López: EXAM # 01	Page 4 of 2
[bookmark: _Ref49482707]DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Exam No. 1
EXAM NO. 1: BASH
submitted to:
Professor Joseph Picone
ECE 3822: Software Tools for Engineers
Temple University
College of Engineering
1947 North 12th Street
Philadelphia, Pennsylvania 19122

September 28, 14
prepared by:
Silvia López de Diego
Email: tud22978@temple.edu

[bookmark: _Ref49478891]Problem 1
The first problem required the count of the number of directories on the database that have at least three vowels in the last name, and at least 5 letters in the first name of the directory name.
The first thin that was taken into account was the name structure of the directory tree that comprises the database. The database is first organized into 20 different books, then sorted in cd numbers and dates, and finally organized into the names of the patients. Figure 1 shows an example of the path for one of the sessions:
[image:]
Figure 1. Sample path to a session in the database
Knowing this information it was then necessary to find a command to obtain the sessions that followed the name constraints:
It was determined that the best command for this type of task in which directory names are being taken into consideration was the find command with the “type directory” (-type d) option. The restrictions were completed as follows:
 find /path/to/database/book_0[0-9]/*/*[A,a,e,I,o,u]*[a,e,i,o,u]*[a,e,i,o,u]*_?????* -type d………..(1)	
It can be seen in Command (1) that the book range than is being evaluated is from book_00 to book_09. This was done this way because if the evaluation is done at once across the entire database, the following error would occur:
/usr/bin/find Arg list too long
This error is happening because of the limitation for argument count that can be passed to find. This maximum value is defined by ARG_MAX and Figure 2 shows its exact value.
[image:]
Figure 2. Maximum length of arguments that can be passed to find
The multiple use of the wildcards (*) throughout the command expands the list longer than the shell can handle and, therefore, returns an error about the amount of arguments passed. In order to deal with this expansion into memory issue, it could be a better option to use approaches such as find –exec. However, the approach that was taken was writing a script to divide the search into two and then add the results of each search. The details can be seen in Script 1.

#count the number of directories in file1.list and store it into a variable COUNT1
COUNT1=$(wc -l < ~/exam1_tmp/file1.list);
#
#find the directories from book_10 to book_19 and saving the path list in ~/exam1_tmp/file2.list
find /home/amir/ece_3822/data/tuh_eeg/book_1[0-9]/*/*[A,a,E,e,I,i,o,O,u,U]*[a,e,i,o,u]*[a,e,i,o,u]*_?????* -type d > ~/exam1_tmp/file2.list
#
#count the number of directories in file1.list and store it into a variable COUNT2
COUNT2=$(wc -l < ~/exam1_tmp/file2.list);
#
#add COUNT1 and COUNT2 and store the result in variable final
final=$(($COUNT1 + $COUNT2));
#
#echo the result
echo $final
#
#remove the tmp folder that was created with the files that the program created
rm -r ~/exam1_tmp;

If the portability of the script had to be taken into consideration, it would be important to store the database in a standard path (perhaps home). It can also be seen that all the files used throughout the script are deleted by the last command in order to keep the system clean of temporary files.
Command (1), used twice in the script, uses wildcards (*) in order to evaluate if a particular last name has at least three vowels. A wild card is used at the beginning of the word, in this space could be characters or nothing, this wildcard is followed by [A,a,E,e,I,I,O,o,U,u] to take into account the names that start with a vowel and, therefore, have An upper case vowel. Since after the first letter, the name is always lower case in the database, the expression can be substituted by *[a,e,i,o,u]* in the last two instances (this has to be done three time to account for at least 3 vowels).
After the last name constraint has been taken care of, the first name constraint (at least 5 letters) can be easily taken care of by using 5 single character wildcards (?) and then a regular wildcard (*).
Figure 3 shows the result of the problem:
[image:]
Figure 3. There are 40054 directories in the database with at least 3 vowels in the last name and at least 5 letters in the first name
Problem 2
The second problem required the count of the size, in bytes, of all the files in book_01 of the database that finished in *_00.txt. In order to solve this problem, a file with the path of these specific sessions was first created through the following command:
find /path/to/database/book_01 –type f –name “*00.txt” > files.list
A script that iterated through each of the lines (path to each file) in this file and took file.list as an argument was then created.
More details can be seen in Script 2.
#Program that takes a list of files in /home/amir/ece_3822/exam_01/ and calculates the bytes of each file
#
#takes a path list file as an argument
file=$1

#initialize the variables (accumulators)
i=00;
total=00;
#
#Loop through each line of the file and use wc -c to count bytes of each file
for file in $(cat /home/amir/ece_3822/exam_01/$1);
do
i=$(wc -c < $file);
#accumulate the size by adding the new size to the accumulated bytes
total=$(($total + $i));
done
#
#display the result
echo $total

Script 2 iterates through the list of paths that is passed to the program and calculates the number of bytes of each file and accumulates the sizes in a variable called total. After the program jumps out of the loop, the result is printed to standard out. Figure 4 shows the result of the problem:

[image:]
Figure 4. There are 7688004 bytes in all the files of book_01 that are named *00.txt
Another way to solve this problem would be to find all the files names “*eg_00” in book_01, pipe the result to xargs and concatenate all the .txt files, using wc –c to calculate the size of the merged .txt files. The problem with the approach is that it would not work if the files were not all the same type. It would get more complicated if the files were not .txt files.
Problem 3
For this problem the processes IDs of the processes under the user’s name in electrodata had to be tracked and killed. In this sense, a list of processes were created in Electrodata by typing bash (create a child process). The list of processes was generated through the following command:
ps –ef | grep tud22978………………………………………………………………………………….....(2)
Figure 5 shows the output of Command (2):
[image:]
Figure 5. Output of Command (2)
The first three columns of Figure 5 show, in order from left to right, the following information:
· User ID (UID)
· Process ID (PID)
· Parent Process ID (PPID)

Basically, if a Process ID is killed all the child processes of the killed process will be killed as well. On the other hand, if a Parent Process ID is killed, the process that created the process whose parent is being killed will be killed, and all it child processes will be killed as well. This concept can be explained in an easier way through examples. In this sense, Figure 6 shows how the current process is related to its parent process:
[image:]
Figure 6. Shows how the current process relates to its parent Process
Basically, if the following command is executed:
kill -9 19798
The only process that would be killed would be the current process ID. However, if the following command is executed:
kill -9 9702
Three processes would be killed. The parent process (whose PID is 9702) and the two child processes of this process (whose PPID is 9702).
Figure 7 Shows a diagram of all the processes listed in Figure 6 with their dependencies and relations:
[image:]
Figure 7. Diagram of processes with their dependencies and relations
Basically, if the third process from top to bottom is killed (killing the first two is not permitted) the connection to Electrodata would be closed (that is the main process for login) and all the child processes would be killed as well.
In this sense, after the command Kill -9 56136 was executed, the connection to Electrodata was closed and all the other child processes were killed as well. So when the connection to Electrodata was restarted, the command ps –ef | tud22978 only returned what is shown in Figure 8.
[image:]
Figure 8. Output of Command (2) after killing the main parent process and restoring connection
[bookmark: _GoBack]Figure 8 shows that the only processes running are the root, the main bash that is started with login and the two processes produced by command (2).
ECE 3822: Software Tools for Engineers	September 28, 14
image4.png
amir-VirtualBox_[1]: problem_82.sh files. list
7688004

image5.png
‘tud22978
tud22978
tud22978
tud22978
tud22978
tud22978
root.

tud22978
tud22978
tud22978

4729
6285
8366
0702

10797

10798

48448

56136

56154

65392

65392
4729
6285
8366
0702
0702
1375

48448

56136

56154

13
13
13
13
13
13
13
13
13
13

19
19
19
19
19
19
18
18
18
19

pts/0
pts/o
pts/o
pts/o
pts/o
pts/o

pts/o
pts/e

()
00
00
00
00
00
00
00
00
08

()
00
00
00
00
00
00
00
00
08

()
00
00
00
00
00
00
00
00
08

bash
bash

bash

bash

ps -ef

arep --color=auto tud22978
sshd: tud22978 [priv]

sshd: tud22978epts/e

-bash

bash

image6.png
Parent of the Current Process

tud22978 4729 653927 13:19 pts/0
tud22978 6285 © 13:19 pts/0
tud22978 836 1 13:19 pts/0
tud22978 1 13:19 pts/0
tud22978 1979 0 13:19 pts/0
tud22978 (49798 % 9 13:19 pts/6
root ©13:18 ?

tud22978 5 0 13:18 ?

tud22978 56154 56136 © 13:18 pts/0
tud22978 §5392 56154 © 13:19 pts/0

Current Process ID

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00

00
00
00
00
00

bash

bash

bash

bash

ps -ef

grep --color=auto tud22978
sshd: tud22978 [priv]
sshd: tud22978@pts/0
-bash

bash

image7.png
1375 (root)

=)

48448

=

56136

7

56154

=

65392

=

4729

=)

6285

P

8366

p=

9702

19798

19797

image8.png
tud22978@electrodata: ~$ ps -ef |grep tud22978

tud22978 1020 44276 © 14:03 pts/0 00:00:00 ps -ef

tud22978 1030 44276 © 14:03 pts/0 00:00:00 grep --color=auto tud22978
root. 41661 1375 © 14:02 ? 00:00:00 sshd: tud22978 [priv]
tud22978 44255 41661 © 14:02 7 00:00:00 sshd: tud22978@pts/®
tud22978 44270 44255 1 14:02 pts/@ ©0:00:00 -bash

image1.png
/book_00/00002353_20040920/Biscocho_Eleonor

book_# cd#_date Lastname_Firstname

image2.png
amir-VirtualBox_[1]: getconf ARG_MAX
2097152

image3.png
amir-virtualBox_[1]: problem_@1.sh
40054

