ECE 3822	EXAM NO. 1	Fall’2014
Name:

	Problem
	Points
	Score

	1
	35
	

	2
	35
	

	3
	[bookmark: _GoBack]30
	

	Total
	100
	

Notes:
(1) For this exam you are allowed to open a terminal window on your computer and to interact with the operating system. However, you are not allowed to web surf or Google.
(2) Create your solutions in an MS Word document and email it to the instructor at the end of the exam. Use “ECE 3822” in the subject line, and name your attachment using our usual convention of “lastname_firstname_ex01.docx.”
(3) In addition to providing your code, explain your solution to each problem.
Problem No. 1: For the database provided in class, count the number of directories (sessions) that have at least three vowels (defined as “a”, “e”, “i”, “o” and “u” to keep things simple) in the last name and at least 5 letters in the first name of their directory name.

For this problem I used the following command: “find . –type d | egrep .*/ .*/ .*/.*[aeiouAEIOU].* [aeiouAEIOU].* [aeiouAEIOU].*_..... | wc –l”.

“find . –type d” creates a list of all directories in the database. “egrep .*/.*/.*/.*[aeiouAEIOU].*[aeiouAEIOU].*[aeiouAEIOU].*_.....” uses regular expressions to search for the desired directory names. The output of the “find” command was in the following format: “./book_05/00009561_20040626/Argenal_Jaquelyn”. “egrep” allows for an extended library of regular expressions for the “grep” command. The “.*/.*/.*/” portion is the regular expression “*” and “.”, so this command looks for any character zero or more times until it sees a “/”, and leaves off after the third “/”. After the third slash, “.*[aeiouAEIOU].*[aeiouAEIOU].*[aeiouAEIOU].*_” looks for three vowels, upper case or lower case, before the “_”. The brackets mean that any vowel will evaluate to true, and the “.*” make sure that three vowels are found before reaching “_”. The last portion, “.....”, looks for five consecutive characters. “wc –l” counts the remaining entries that pass all the above specifications. My result for the database was 40054 directories (figure 1).

[image: C:\Users\Marc\Documents\Temple\Fall 2014\software tools for engineers\exam 1 rework\part 1 output.JPG]
Figure 1: number of directories counted.

Problem 2: Write a shellscript that loops over all *_eg_00.txt and accumulates the size of the file in bytes. Compare this to the output of the du command and show that they produce the same result. Use only the book_01 data.

The script I used is shown in figure 1. This code was executed within the “book_01” folder.

[image: C:\Users\Marc\Documents\Temple\Fall 2014\software tools for engineers\exam 1 rework\exam_1_problem_2 shell script.JPG]
Figure 2: Script that accumulates the size of the files in book_01 of the database

The “find . –name “*.txt” –ls” code executes the “find” command by looking for any name that ends with “.txt”. In this case, the “*” is the wildcard, so it will look for any text that ends with “.txt”. The “-ls” option lists the data with additional information. “awk ‘{total += $7} END {print total}’” adds the size of all the files, and prints the result. “total” is a variable created by “awk”, and “+= $7” means that “total” will equal the 7th column of the “-ls” listing, and then will equal total + each new 7th column. The 7th column is the size of the file in bytes, so when the “print total” command is executed, the total file size will print. My result for this was “15712872 bytes” (figure 2).

[image: C:\Users\Marc\Documents\Temple\Fall 2014\software tools for engineers\exam 1 rework\problem 2 output.JPG]
Figure 3: total bytes of book_01 from script

To verify my result with the “du” command, I used the “du $(find . –name “*.txt”) –cb” command. The “$(find)” command is executed as an argument to the “du –cb” command. My result was “15712872 bytes” (figure 4).

[image: C:\Users\Marc\Documents\Temple\Fall 2014\software tools for engineers\exam 1 rework\bytes output.JPG]
Figure 4: du command output, confirming my script result.

Problem 3: When you log into Linux and open a terminal window, a number of process are created under your name. Track down all these processes, list them, and explain how they are related. For those runnin virtual machines, ignore the processes related to the basic virtual machine. Just focus on what happens when you open your first terminal window. Which of these processes would you kill if you wanted to force a logout (but don’t actually try this during an exam!).

For problem 3, I want you to do the following:

ssh into electrodata
you should get a login prompt
type "bash"
generate a list of all processes under your name
explain how they are related through process ids
kill the top level process so that all children are killed also
demonstrate that this logs you out and leaves no processes running
 (do the latter by logging in again and see what is running under
 your name)

I ssh into electrodata, and type “bash” to open a shell within electrodata. Next I use the “ps fx” command to list the processes in a tree (figure 3).

[image: C:\Users\Marc\Documents\Temple\Fall 2014\software tools for engineers\exam 1 rework\NEW p 3 process tree.JPG]
Figure 3: Process tree in the shell created in electrodata.

The “_” symbol under the “command” column shows which processes are children of the above command. Thus, there is a bash shell process that is a child of “sshd”, and this shell has a child bash shell of its own, which in turn is the adult of the “ps fx” process. The “PID” column is an arbitrary number assigned to each process, but the “PPID” column takes on the “PID” of its parent process. Figure 4 shows the process tree with the PPID in the fourth column using the “ps elf” command.

[image: C:\Users\Marc\Documents\Temple\Fall 2014\software tools for engineers\exam 1 rework\elf.JPG]
Figure 4: Process tree with PPID

We can see that “bash TE” has a PPID that is equivalent to the “-bash LANG=” PID. Also, “ps” has the same PPID as the “bash TE” PID. Next I kill the “sshd” process (from figure 3) with the “kill 40571” command (figure 5).

[image: C:\Users\Marc\Documents\Temple\Fall 2014\software tools for engineers\exam 1 rework\NEW p 3 close tree.JPG]
Figure 5: Kill the parent sshd process, and all children are killed. This logs me out of electrodata.

Killing this top level process kills “-bash”, “bash”, and “ps fx” since they are all children processes of “sshd”. Since both shells are killed, I was logged out of electrodata. After logging back in and entering the “ps fx” command, we see that our upper bash shell does not exist (figure 6).

[image: C:\Users\Marc\Documents\Temple\Fall 2014\software tools for engineers\exam 1 rework\NEW p 3 log back in.JPG]
Figure 6: upper bash shell successfully killed.

image3.jpeg
~/school/ece_3822/data/tuh_eeg/book_81 --> bash exam_1_problem_2.sh
115712872
~/school /ece_3822/data/tuh_eeg/book 61 --> ||

image4.jpeg
15712872 total
~/school/ece_3822/data/tuh_eeg/book_81 --> du S(find . -name "*.txt") -cbll

image5.jpeg
tues1526@electrodata:~$ bash
tueB1526@electrodata:~$ ps

PID
40571
40572
40672
40726

Y
pts/o
pts/o
pts/o

STAT
B
ss
5
R+

TIME
0:00
0:00
0:00
0:00

tues1526@electrodata:~$ |

x
COMMAND
sshd: tues1526@pts/0
_ -bash
_ bash
_ ps fx

image6.jpeg
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

© 147346 48868 48867 20 0O 18164 7504 wait Ss pts/2 ©:00 -bash LANG=
© 147346 48968 48868 20 0O 14720 4060 wait S pts/2 ©:00 _ bash TE
© 147346 49022 48968 20 _ 0 9696 780 - R+ pts/2 0:00 _ ps

tues1526@electrodata:~$ |

image7.jpeg
tues1526@electrodata:~$ kill 40571Connection to electrodata.eng.temple.edu closed by remote host.
conne(i‘mn to electrodata.eng.temple.edu closed.
2

image8.jpeg
tueB1526@electrodata:~$ ps

PID TTY STAT TIME
40885 ? s 0:00
40886 pts/6 Ss 0:00
40984 pts/6 R+ 0:00

tues1526@electrodata:~$

fx
COMMAND
sshd: tues1526@pts/0
_ -bash
_ ps fx

image1.jpeg
find . -type d | egrep .*/.*/.*/.*[aelouAEIOU].*[aeiouAEIOU].*[aelouAEIOU].*_.
40054
~/school/ece_3822/data/tuh_eeg --> [l

| we -1

image2.jpeg
find

GNU nano 2.2.6

-name "*.txt"

-ls

xam_1_problem 2.sh

awk '{total += §7} END {print total}'

