J. Diana: EX # 01 Rework		Page 1 of 3
[bookmark: _Ref49482707]DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Exam No 01:
Exam 01 - Rework
submitted to:
Professor Joseph Picone
ECE 3822: Software Tools for Engineers
Temple University
College of Engineering
1947 North 12th Street
Philadelphia, Pennsylvania 19122

September 29, 14
prepared by:
Jeffrey Diana
Email: Jeffrey.diana@temple.edu

Problem 1.
The first problem tasks us to find all of the directories of our database that contain at least 3 vowels in the patient’s last name and at least 5 characters in the patient’s first name. This is done with the use of the find command. Working from the tuh_eeg directory I was able to use the find command in the current directory as denoted by the use of the “.” proceeding find. Using the name option I was able to search all the directories and files for a specified string. As shown the string of characters is made up of wildcards and specified characters. The first portion “*[aieouAEIOU]*[aeiou]*[aeiou]*” looks for a last name that has at least 3 vowels. The asterisks are there to account for all of the possible strings of characters between the 3 vowels we are searching for. These can be comprised of multiple characters or single characters which is why the asterisk is used as opposed to the question mark. Question marks are also wildcards that represent any single character. As the problem tasks us to find directories with 5 characters in the first name we can specify this in the find command by using the five question marks. This is followed by an asterisk because names can be longer than five characters but must be at least 5 characters long.
Knowing the format of the directory names, the first set of square brackets contain both lower and upper case vowels to take care of the case where the last name of the patient starts with a vowel.
[image:]
Figure 1: Problem 1 Command and Output

Problem 2.
I solved this problem similarly to a previous homework problem. I found all the files with the name “*eg_00.txt”. Using the asterisk wildcard I’m able to obtain all the files with the name eg_00.txt from all the directories I am starting the search from. In this case I started at the top of the database which is the “tuh_eeg” directory containing the database. I search for these files in book_01 as described in the problem. I pipe these file paths to xargs cat and writes the output to all.txt. The cat command is used here to concatenate the text contained in each file. To concatenate all the text into one text file I used the xargs command which takes the standard in data, which in this case is the stream of paths to each of the eg_00.txt files separated in to lines, and parses each line to be space separated arguments. As these arguments are passed to the cat command they are concatenated and the output is directed to “all.txt”.
I then proceeded to take the output “all.txt” file and use the wc command with the –c option. The wc command is the ‘word count’ command, and when using it with specific options we can retrieve count information such as new lines, words, and even bytes. Here I used wc –c command to find the size of all the eg_00.txt files contained in book_01 of our database in bytes. I also apply the du command which stands for ‘disk usage’ to find the size of my concatenated file. I used this command with the –b option to obtain the disk usage of the file in bytes as desired. As Figure 3 will show that the sizes of both the wc and du command output the same result
[image:]
Figure 2: Problem 2 Script: exam1.sh
[image:]
Figure 3: Output of exam1.sh

Problem 3.
The final problem involved knowing how processes and parent processes are constructed and how we can identify them. We can obtain the processes information using either the top or ps command. For this problem I used the ps command which stands for ‘process status’ with the options –ef, where e displays every process and ‘f’ formats the displayed information. Figure 4 shows the column labels.
· UID: User ID
· PID: Process ID
· PPID: Parent Process ID
As shown in Figure 5 we can see that once logged into electrodata I started another bash shell. By going backwards through the commands that were used we can see the tree of processes and parent processes.
[image:]
Figure 4: ps command column labels
[image:]
Figure 5: List of Processes Containing My Username
We can start by looking at the grep and ps command process IDs. Though they have different process IDs we can observe that they have the same parent process ID: 10948. Now this parent process ID is the process ID of the bash command we ran proceeding our login onto electrodata. This is understandable being that the ps and grep commands were run while we were within our second bash shell. This is reinforced as we track the parent ID of the bash command to the process ID of the –bash command which is 7881. This –bash command I’ve deduced to be the bash shell that is started on login just as it is on our local machines. The parent process ID of the –bash command can then be traced to the process ID of 7872. We can see that the sshd process with the PID of 7872 is the top level process. This is more evident when we us the ps –fx command as was pointed out by another student. Figure 6 shows a tree of process showing sshd to be the top level.
[image:]
[bookmark: _GoBack]Figure 6: ps -fx output of process tree
As shown in Figure 7 killing the top level process indeed does force us to log out of the electrodata server.
[image:]
Figure 7: Killing the Top Level Process
As shown in Figure 8 we can see that the previously created shell which was a child process of the initial bash shell on login has been terminated as desired.
[image:]
ECE 3822: Software Tools for Engineers		September 29, 14
image4.png
tucs4481@electrodata:~$ ps -ef
uID PID PPID C STIME TTY TIME CMD

image5.png
Last login: Mon Sep 29 18:33:18 2014 from 10.109.140.222

tuc54481@electrodata:~$
tuc54481@electrodata:~$
root 4077 1375 ©
tucs544s1 7872 4077 0O
tucsa4si 7881 7872 3
tuc54481 10948 7881 2
tuc54481 20387 10948 0O
tuc54481 20389 10948 ©

bash

ps -ef | grep 'tuc54481
18:33 ? 00:00:00 sshd: tuc54481 [priv.
18:33 ? 00:00:00 sshd: tuc54481@pts/0
18:33 pts/0 00:00:00 -bash

18:33 pts/0 00:00:00 bash

18:33 pts/0 00:00:00 ps -ef

18:33 pts/® 00:00:00 grep

uto tuc54481

image6.png
tuc54481@electrodata:~$ ps -fx
Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html

PID TTY
7872 7
7881 pts/0

10948 pts/0

64386 pts/O

STAT
B
ss
s
R+

TIME
0:00
0:00
0:00
0:00

COMMAND
sshd: tucs4481@pts/o
_ -bash
_ bash
\ ps -fx

image7.png
tucs4481@electrodata:~$ kill -9 7872Connection to electrodata.eng.temple.edu closed by remote host.
Connection to electrodata.eng.temple.edu closed.
jeff@ieff-virtualBox:~$

image8.png
Last login: Mon Sep 29 18:33:46 2014 from 10.109.140.222
tucs4481@electrodata:~$

root 24992 1375
tuc54481 29857 24992
tuc54481 29867 29857
tuc54481 37078 29867
tuc54481 37080 29867

)
)
6
)
)

tucs54481@electrodata:~$

ps -ef | grep 'tuc544s1

18:42 ? 00:00:00 sshd: tuc54481 [priv.
18:42 2 00:00:00 sshd: tuc54481@pts/0

18:42 pts/0 00:00:00 -bash

18:42 pts/0 00:00:00 ps -ef

18:42 pts/0 00:00:00 grep --color=auto tuc54481

image1.png
jeff@jeff-virtualBox:~/ece_3822/data/tuh_eeg$ find . -name "*[aeiouAEIOU]*[aeiou]*[aeiou]*_22222*" | wc -1
40054

image2.png
GNU nano 2.2

1 /bin/bash
find ./book_01 -name '%eg_8@.txt' | xargs cat > all.txt

ccho "'we -c all.txt' command output is
Wwe -c all.txt

cho "du command output is
du -b all.txt

image3.png
jeff@jeff-virtualBox:~/ece_3822/data/tuh_eeg$./examl.sh
"we -c all.txt' command output is:

7688004 all.txt

du command output is:

7688004 all.txt

