C. Chen: Ex-redo # 01	Page 3 of 2
[bookmark: _Ref49482707]DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Exam No 01:
Exam 1 - Rework
submitted to:
Professor Joseph Picone
ECE 3822: Software Tools for Engineers
Temple University
College of Engineering
1947 North 12th Street
Philadelphia, Pennsylvania 19122

October 2, 14
prepared by:
ChiehJeng Chen
Email: Jay.Chen@temple.edu

[bookmark: _Ref49478891]Problem
For the first problem, we were ask to count the number of directories that have at least three vowels in the last name and at least 5 letters in the first name of their directory name.
Second problem asks us to write a shellscript that loops over all _eg_00.txt and accumulates the size of the file in bytes. Compare this to the output of the du command and show that they produce the same result. Use only the book_01 data.
Problem three asks us to open a terminal window and track down all the processes under our name and list them, and explain how they are related. Also think about which of these processes I would kill if I wanted to force a logout.
[bookmark: _Ref49480580]Approach
During the exam I used find –type d | grep ‘a\|e\|i\|o\|u’ | -cut –d = -f 2, which doesn’t return the wanted results, but afterwards I realize I could’ve relied on the find command a little more.
So what I did was this
[image:]
The find . shows that it will be finding every single directory under tuh_eeg directory, and the –name allows me to start my specification on what I’m looking for. The first bracket includes upper and lower aeiou to take care of the case sensitivity where if the last name of the patient starts with a vowel, it will be upper case and we want it to count, however we add an * before it just in case the last name doesn’t start with the vowel. We combine this with another * and then another set of bracket aeiou because there can be any random amount of letters between the second vowel in the last name, connect again with another *aeiou for the third one. We then add another * to indicate it can have anything afterwards as long as there are three vowels in the last name we want to keep this directory. The reason why there are 5 question marks is because we want to search for a first name with atleast 5 characters in it, the * afterwards shows that as long as there are 5 characters in it, it can be as long as it wants after. Now that we defined our count we pipe it into wc –l to find how many lines there are.
Problem 2, what we need to do is write a script that finds all the eg_00.txt under book_01 data and accumulates the size of the file. There are several ways to do this but I personally thought it would be easier if I just combined all the files together and count them all as one big chunk instead of do some type of adder that goes through each eg_00 and adds them separately, save it somewhere and add it again. So the script looks as follows.
[image:]
What we did here is using the find command we went under book_01 and searched for all files with the extension eg_00.txt excluding the eg_01.txt files, using xargs cat, every single file it finds it adds to concatenates to this new file which will then be saved as p2.txt. With this we can simply use word count wc with option –c which tells the command to print the byte counts. Because the question asks us to compare this with using du command, we will do this from the command line to the p2.txt file. However, we need to use the –b option to show the byte size of the whole file.
Part 3 is actually the hardest part in my opinion, I spent a long time trying to understand this better due to the fact that I was slightly behind in class schedule. So I used the ps command which stands for process status and using their options ‘e’ and ‘f’. The ‘f’ formats the displayed information and the ‘e’ goes through every process. It took a while to understand the relationship between PID and PPID and also how they could relate and what these ID could actually show the user.
So after starting a terminal window, I used the command ps –ef and it showed me a whole list of things running under the name jay and also root with PPID(parent processor ID) 1,2 and many others, however we can see that certain commands share the same parent process ID and we can tell that these commands were connected in some way. A way to do this is to use bash, due to the fact that bash creates a baby shell, all the commands used under the baby shell will have the same PPID, and this PPID will lead to another PPID and slowly traced until the top level parent process. So to kill that PPID we find will force a logout.
Results
[image:]
Figure 1. Results for problem 1
	[image:]
Figure 2. Results from part 2
[image:]
Figure 3. Results from part 2
[bookmark: _GoBack][image:]
Figure 4. ps -ef after logging in
[image:]
Figure 5. Here youc an see that I used the bash command to create a children shell, and did ps -ef under that shell. The ps -ef then has the PPID that matches the PID of the bash, and that bash belongs to another parent shell which is 10541, which matches the PID of the bash above it which is when we first logged in, by killing 10531, it will force us to terminate the terminal window.

ECE 3822: Software Tools for Engineers	October 5, 14
image4.png
Jay@ubuntu:~/ece_3822/data/tuh_eegS ./examlredo.sh
7688004 p2.txt

image5.png
jay@ubuntu:~/ece_3822/data/tuh_eeg$ du -b p2.txt
7688004 p2.txt
jay@ubuntu:~/ece_3822/data/tuh_eegs ll

image6.png
jay@ubuntu:~$ ps -ef

uID PID PPID C STIME TTY cMD
root 1 0 0 11:53 ? 00:0 /sbin/init
root 2 0 0 11:53 ? 00:0 [kthreadd]
root 3 20 ? 00:0 [ksoftirqd/e]
root B 20 ? 00:0 [kworker /0:0H]
root 7 20 ? 00:0 [recu_sched]
root 8 2 0 11:53 ? 00:0 [rcu_bh]

root 9 2 0 11:53 ? 00:0 [migration/e]
root 10 20 ? 00:0 [watchdog/e]
root 11 20 ? 00:0 [watchdog/1]
root 12 20 ? 00:0 [migration/1]
root 13 20 ? 00:0 [ksoftirqd/1]
root 15 20 ? 00:0 [kworker /1:0H]
root 16 20 ? 00:0 [khelper]

root 17 2 0 11:53 ? 00:0 [kdevtmpfs]
root 18 2 0 11:53 ? 00:0 [netns]

root 19 20 ? 00:0 [writeback]
root 20 20 ? 00:0 [kintegrityd]
root 21 2 0 ? 00:0 [bioset]

image7.png
root
lp
root
root
root
root
jay
jay
jay
jay
jay

9992

9995
10031
10170
10232
10477
10531
10540
10541
10590
10603

©oroco0ooco0000

pts/1
pts/1
pts/1

/usr/sbin/cupsd -
Jusr /lib/cups/not
tpvmlpd2

[kworker /6:0]
[kworker /u16:1]
00:00:00 [kworker /u16:0]
00:00:00 gnome-terminal
00:00:60 gnome-pty-helper
00:00:00 bash

bash

ps -ef

image1.png
jay@ubuntu:~/ece_3822/data/tuh_eeg$ find . -name "*[aeioUAEIOU]*[ae
iou]*[aetiou]*_: * | we -1

image2.png
/bin/bash

find ./book_01 -name '*eg_06.txt' | xargs cat - p2.txt

We -C p2.txt

image3.png
jay@ubuntu:~/ece_3822/data/tuh_eeg$ find . -name "*[aeilouAEIOU]*[ae
lou] *[aeiou]*_: * | we -1
10054

