1.
For this task I used:

find . -type d -name "*[aeiou]*[aeiou]*[aeiou]*_?????*" | wc -l

[bookmark: _GoBack]I used this command in the ~/ece_3822/data/tuh_eeg/ directory. The find command search for directories only, with the 'type d' option. It then searches for directory names matching the parameters in quotations. The first part “*[aeiou]*[aeiou]*[aeiou]*_” searches for a last name containing at least three vowels. The first wildcard says “match anything”, followed by “[aeiou]” which tells it to only produce a match if it finds one of the characters in the brackets. The next wildcard then says match anything (or nothing) after matching a letter in the first bracket. This trend continues until it finds three vowels, then the final wildcard says “match anything or nothing up to the first underscore encountered”. At this point, three vowels have been found and it can begin to check for a first name that contains at least 5 characters. The '?' character is very similar to the star, except that it only works for one character. “?????_” tells the find command to find any string of 5 characters, then match anything or nothing afterwards. Finally, the matching results are piped to the wordcount command with a '-l' option to indicate that it should only count newlines. As a result, we get a total of 36912 matching results in our database.	Comment by Joseph Picone: As we discussed, your solution is not case insensitive.

2.

For this task, I used the following command (which I put inside of a shellscript as the task requests):

#! /bin/bash
ls -l */*/eg_00.txt | awk -F " " '{total += $5} END {print total}'

The first part of this command line is the ls command. Running it from the /book_01' directory, it looks for files of the name “*eg_00.txt” and prints a long listing with the 'l' command. These results alone produces an output format of:

-rw-r--r-- 1 steve steve 1140 Aug 24 01:10 00009989_20130312/Brugal_Sherie/eg_00.txt
-rw-r--r-- 1 steve steve 1346 Aug 24 01:10 00009989_20130312/Difonzo_Michaela/eg_00.txt
-rw-r--r-- 1 steve steve 1346 Aug 24 01:10 00009989_20130312/Gonseth_Kaylene/eg_00.txt
-rw-r--r-- 1 steve steve 1621 Aug 24 01:10 00009989_20130312/Kellywood_Felisha/eg_00.txt

Because of this, we pipe the results to the awk command, which uses the '-F' switch 'field seperate' the input by the following string, which in our case is a space. This allows us to use $0 to refer to the full string, $1 to refer to the first column, and $2 to refer to the second column, etc... Our next step is to perform a running total using '{total+=$5}' which will store the sum of all of the bytes into the 'total' variable. We then use 'END {print total}' to print the number stored in 'total' once the last line is read. This gives us a result of 7688004 bytes.

We then perform this same task using a combination of find and the du command, like so:
find ./data/tuh_eeg/book_01/* -type f -name "*eg_00.txt" -exec du -b {} \; | awk -F " " '{total+=$1} END {print total}'

This looks through all *eg_00.txt files in book_01 and prints their disk usage size in bytes with the -b flag. The sum is then totaled and gives us the same result: 7688004 bytes.

3.

After opening a new terminal window in electrodata and running 'bash', we use the following command to see our currently running processes:

ps -fx

which gives us:

 PID TTY STAT TIME COMMAND
61937 ? S 0:00 sshd: tuc42100@pts/0
61946 pts/0 Ss 0:00 _ -bash
63985 pts/0 S 0:00 _ bash
46959 pts/0 R+ 0:00 _ ps -fx

This tells us that our top level process is an SSH daemon running our current session. The next process is our first bash shell that we logged into when SSH'ing into the server. The second bash shell is the one we created by entering 'bash', and the last command is the ps command we just ran. By killing the top level SSH daemon, using:

kill 61937

We can successfully log ourselves out of the server. Upon logging back in, everything goes back to normal.
