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Why Are They Called “Hidden” Markov Models?

Consider the problem of predicting the outcome of a coin toss experiment.
You observe the following sequence:

What is a reasonable model of the system?

O HHTTTHTTH…H( )=

1 2

P(H) 1-P(H)

1-P(H)

P(H)

1 2

a11 a22
1-a11

1-a22

1 2

3

Heads Tails

1-Coin Model
(Observable Markov Model)
O = H H T T H T H H T T H ...
S = 1 1 2 2 1 2 1 1 2 2 1 ...

2-Coins Model
(Hidden Markov Model)
O = H H T T H T H H T T H ...
S = 1 1 2 2 1 2 1 1 2 2 1 ...

P(H) = P1 P(H) = P2

P(T) = 1-P1 P(T) = 1-P2

a11 a22

a12

a21

a13

a31
a32

a23

a33

P(H): P1 P2 P3

P(T): 1-P1 1-P2 1-P3

3-Coins Model
(Hidden Markov Model)
O = H H T T H T H H T T H ...
S = 3 1 2 3 3 1 1 2 3 1 3 ...
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Elements of a Hidden Markov Model (HMM)

• N — the number of states

• M — the number of distinct observations per state

• The state-transition probability distribution

• The output probability distribution

• The initial state distribution

We can write this succinctly as:

Note that the probability of being in any state at any time is completely
determined by knowing the initial state and the transition probabilities:

Two basic problems:

(1) how do we train the system?

(2) how do we estimate the probability of a given sequence
(recognition)?

This gives rise to a third problem:

If the states are hidden, how do we know what states were used to
generate a given output?

How do we represent continuous distributions (such as feature vectors)?

A aij{ }=

B bj k( ){ }=

π πi{ }=

λ A B π, ,( )=

π t( ) A
t 1– π=
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Formalities

The discrete observation HMM is restricted to the production of a finite set
of discrete observations (or sequences). The output distribution at any state
is given by:

The observation probabilities are assumed to be independent of time. We
can write the probability of observing a particular observation, , as:

The observation probability distribution can be represented as a matrix
whose dimension is K rows x S states.
We can define the observation probability vector as:

, or,

The mathematical specification of an HMM can be summarized as:

For example, reviewing our coin-toss model:

b k i,( ) P y t( ) k= x t( ) i=( )≡

y t( )

b y t( ) i( ) P y t( ) y t( )= x t( ) i=( )≡

p t( )

P y t( ) 1=( )

P y t( ) 2=( )

…
P y t( ) K=( )

= p t( ) Bπ t( ) BA
t 1– π 1( )= =

M S π 1( ) A B yk 1 k K≤ ≤,{ }, , , ,{ }=

1 2

3

a11 a22

a12

a21

a13

a31
a32

a23

a33

P(H): P1 P2 P3

P(T): 1-P1 1-P2 1-P3

S 3=

π 1( )

1 3⁄
1 3⁄
1 3⁄ 

 
 
 
 

=

A

a11 a12 a13

a21 a22 a23

a31 a32 a33

=

B
P1 P2 P3

1 P1– 1 P2– 1 P3–
=
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Recognition Using Discrete HMMs

Denote any partial sequence of observations in time by:

The forward partial sequence of observations at time  is

The backward partial sequence of observations at time  is

A complete set of observations of length  is denoted as .

What is the likelihood of an HMM?

We would like to calculate — however, we can’t. We can

(see the introductory notes) calculate . Consider the brute

force method of computing this. Let denote a specific

state sequence. The probability of a given observation sequence being
produced by this state sequence is:

The probability of the state sequence is

Therefore,

To find , we must sum over all possible paths:

This requires flops. For and , this gives about

 computations per HMM!

yt1

t2 y t1( ) y t1 1+( ) y t1 2+( ),, …, y t2( ),{ }≡

t

y1
t

y 1( ) y 2( ), …, y t( ),{ }≡

t

yt 1+
T

y t 1+( ) y t 2+( ), …, y T( ),{ }≡

T y y1
T≡

P M y y=( )

P y y= M( )

ϑ i1 i2 … iT, , ,{ }=

P y ϑ M,( ) b y 1( ) i1( )b y 2( ) i2( )…b y T( ) iT( )=

P ϑ M( ) P x 1( ) i1=( )a i2 i1( )a i3 i2( )…a iT iT 1–( )=

P y ϑ M( ),( ) P x 1( ) i1=( )a i2 i1( )a i3 i2( )…a iT iT 1–( )=

x b y 1( ) i1( )b y 2( ) i2( )…b y T( ) iT( )

P y M( )

P y M( ) P y ϑ M( ),( )
ϑ∀

∑=

O 2TS
T

( ) S 5= T 100=

1.6 10
72×
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The “Any Path” Method (Forward-Backward, Baum-Welch)

The forward-backward (F-B) algorithm begins by defining a “forward-going”
probability sequence:

and a “backward-going” probability sequence:

Let us next consider the contribution to the overall sequence probability
made by a single transition:

α y1
t

( ) P y
1
t

y1
t

= x t( ) i=, M( )≡

β yt 1+
T

i( ) P y
t 1+
T

yt 1+
T

= x t( ) i= M,( )≡
i

S

2

1

•
•

•
•

•
•

i

S

2

1

•
•

•
•

•
•

j

α y1
t

i,( )

α y1
t 1+

i,( )

y t 1–( ) y t( ) y t 1+( )
Summing over all possibilities for reaching state “ “:

α y1
t 1+

j,( ) α y1
t

i,( )P x t 1+( ) j= x t( ) i=( ) ×=

P y t 1+( ) y t 1+( )= x t 1+( ) j=( )

α y1
t

i,( )a j i( )b y t 1+( ) j( )=

j

α y1
t 1+

j,( ) α y1
t

i,( )a j i( )b y t 1+( ) j( )

i 1=

S

∑=
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Baum-Welch (Continued)

The recursion is initiated by setting:

Similarly, we can derive an expression for :

This recursion is initialized by:

We still need to find :

for any state . Therefore,

But we also note that we should be able to compute this probability using
only the forward direction. By considering , we can write:

These equations suggest a recursion in which, for each value of we iterate

over ALL states and update . When , is computed by

summing over ALL states.

The complexity of this algorithm is , or for and ,

approximately 2500 flops are required (compared to flops for the
exhaustive search).

α y1
t

j,( ) P x 1( ) j=( )b y 1( ) j( )=

β

β yi 1+
T

i( ) β yt 2+
T

j( )a j i( )b y t 1+( ) j( )

j 1=

S

∑=

β yT 1+
T

i( )
1, if i is a legal final state

0, otherwise



≡

P y M( )

P y x t( ) i=, M( ) α y1
t

i,( )β yt 1+
T

i( )=

i

P y M( ) α y1
t

i,( )β yt 1+
T

i( )

i 1=

S

∑=

t T=

P y M( ) α y1
T

i,( )

i 1=

S

∑=

t

α y1
t

j,( ) t T= P y M( )

O S
2
T( ) S 5= T 100=

10
72
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The Viterbi Algorithm

Instead of allowing any path to produce the output sequence, and hence,
creating the need to sum over all paths, we can simply assume only one
path produced the output. We would like to find the single most likely path
that could have produced the output. Calculation of this path and probability
is straightforward, using the dynamic programming algorithm previously
discussed:

where

(in other words, the predecessor node with the best score). Often,
probabilities are replaced with the logarithm of the probability, which
converts multiplications to summations. In this case, the HMM looks
remarkably similar to our familiar DP systems.

Beam Search

In the context of the best path method, it is easy to see that we can employ
a beam search similar to what we used in DP systems:

In other words, for a path to survive, its score must be within a range of the
best current score. This can be viewed as a time-synchronous beam
search. It has the advantage that, since all hypotheses are at the same point
in time, their scores can be compared directly. This is due to the fact that
each hypothesis accounts for the same amount of time (same number of
frames).

D t i,( ) a i j∗,( )b k i( )D t 1– j∗,( )=

j∗ maxarg

valid j

D t 1– j,( ){ }=

Dmin t i,( ) Dmin t i∗t,( ) δ t( )–≥
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Training Discrete Observation HMMs

Training refers to the problem of finding such that the model,
, after an iteration of training, better represents the training data than the

previous model. The number of states is usually not varied or reestimated,
other than via the modification of the model inventory. The apriori
probabilities of the likelihood of a model, , are normally not reestimated
as well, since these typically come from the language model.

The first algorithm we will discuss is one based on the Forward-Backward
algorithm (Baum-Welch Reestimation):

Also, denotes a random variable that models the transitions at time

and a random variable that models the observation being emitted at

state  at time . The symbol “•” is used to denote an arbitrary event.

Next, we need to define some intermediate quantities related to particular
events at a given state at a given time:

where the sequences , , , and  were defined previously (last lecture).
Intuitively, we can think of this as the probability of observing a transition
from state to state at time for a particular observation sequence, , (the
utterance in progress), and model .

π 1( ) A B, ,{ }
M

π 1( )

uj i label for a transition from statei to statej≡

u• i set of transitions exiting statei≡

uj • set of transitions enteringj≡

u t( ) t

y
j

t( )

j t

ζ i j, t;( ) P u t( ) uj i= y M,( )≡

P u t( ) uj i= y, M( ) P y M( )⁄=

α y1
t

i,( )a j i( )b y t 1+( ) j( )β yt 2+
T

j( )

P y M( )
-------------------------------------------------------------------------------------- ,

0 , othert

t 1 2 … T, , ,=

 
 
 
 
 

=

α β a b

i j t y

M
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We can also make the following definition:

This is the probability of exiting state . Also,

which is the probability of being in state  at time . Finally,

which is the probability of observing symbol  at state  at time t.

Note that we make extensive use of the forward and backward probabilities
in these computations. This will be key to reducing the complexity of the
computations by allowing an interactive computation.

γ i t;( ) P u t( ) u• i∈ y M,( )≡ ζ i j, t;( )

j 1=

S

∑=

α y1
t

i,( )β yt 1+
T

i( )

P y M( )
----------------------------------------- ,

0, othert

t 1 2 … T, , ,=

 
 
 
 
 

=

i

ν j t;( ) P x t( ) j= y M,( )≡

γ j t;( ), t 1 2 … T, , ,=

α y1
T

j,( ) , t T=

0, othert 
 
 
 
 

=

α y1
t

j,( )β yt 1+
T

j( )

P y M( )
------------------------------------------ ,

0, othert

t 1 2 … T, , ,=

 
 
 
 
 

=

j t

δ j k, t;( ) P y
j

t( ) k= y M,( )≡

ν j t;( ), if y t( ) k= and 1 t T≤ ≤
0, otherwise 

 
 

=

α y1
t

j,( )β yt 1+
T

j( )

P y M( )
------------------------------------------ ,

0, otherwise

if y t( ) k= and 1 t T≤ ≤

 
 
 
 
 

=

k j



INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

MAY 15-17, 1996 TEXAS INSTRUMENTS PAGE 98 OF 147

From these four quantities, we can define four more intermediate quantities:

Finally, we can begin relating these quantities to the problem of reestimating
the model parameters. Let us define four more random variables:

We can see that:

What we have done up to this point is to develop expressions for the
estimates of the underlying components of the model parameters in terms
of the state sequences that occur during training.

But how can this be when the internal structure of the model is hidden ?

ζ i j, •;( ) P u •( ) uj i∈ y M,( ) ζ i j, t;( )

t 1=

T

∑= =

γ i •;( ) P u •( ) u• i∈ y M,( ) γ i t;( )

t 1=

T

∑= =

ν j •;( ) P u •( ) uj •∈ y M,( ) ν j t;( )

t 1=

T

∑= =

δ j k •;,( ) P y
j

•( ) k= y M,( ) δ j k t;,( )

t 1=

T

∑ ν j t;( )

t 1=

y t( ) k=

T

∑= = =

n uj i( ) number of transitions of the typeuj i≡

n u• i( ) number of transitions of the typeu• i≡

n uj •( ) number of transitions of the typeuj •≡

n y
j

•( ) k=( ) number of times the observationk and statej jointly occur≡

ζ i j, •;( ) E n uj i( ) y M,{ }=

γ i •;( ) E n u• i( ) y M,{ }=

ν j •;( ) E n uj •( ) y M,{ }=

δ j k •;,( ) E n y
j

•( ) k=( ) y M,{ }=
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Following this line of reasoning, an estimate of the transition probability is:

Similarly,

Finally,

This process is often called reestimation by recognition, because we need
to recognize the input with the previous models in order that we can
compute the new model parameters from the set of state sequences used to
recognize the data (hence, the need to iterate).

But will it converge? Baum and his colleagues showed that the new model
guarantees that:

a j i( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
--------------------------------------- ζ i j, •;( )

γ i •;( )
------------------= =

α y1
t

i,( )a j i( )b y t 1+( ) j( )β yt 2+
T

j( )

t 1=

T 1–

∑

α y1
t

i,( )β yt 1+
T

i( )

t 1=

T 1–

∑
-------------------------------------------------------------------------------------------------=

b k j( )

E n n y
j

•( ) k=( ) y M,( ) y M,
 
 
 

E n uj •( ) y M,{ }
----------------------------------------------------------------------- ζ i j, •;( )

γ i •;( )
------------------= =

α y1
t

j,( )β yt
T

j( )

t 1=
y t( ) k=

T

∑

α y1
t

j,( )β yt 1+
T

j( )

t 1=

T

∑
------------------------------------------------------=

P x 1( ) i=( )
α y1

1
i,( )β y2

T
i( )

P y M( )
----------------------------------=

P y M( ) P y M( )≥
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Since this is a highly nonlinear optimization, it can get stuck in local minima:
P y M( )

MGlobal
Maximum

Local
Maximum

Perturbation Distance
We can overcome this by starting training from a different initial point, or
“bootstrapping” models from previous models.

Analogous procedures exist for the Viterbi algorithm , though they are
much simpler and more intuitive (and more DP-like):

and,

These have been shown to give comparable performance to the
forward-backward algorithm at significantly reduced computation. It also is
generalizable to alternate formulations of the topology of the acoustic model
(or language model) drawn from formal language theory. (In fact, we can
even eliminate the first-order Markovian assumption.)

Further, the above algorithms are easily applied to many problems
associated with language modeling: estimating transition probabilities and
word probabilities, efficient parsing, and learning hidden structure.

But what if a transition is never observed in the training database?

a j i( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
---------------------------------------=

b k j( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
---------------------------------------=
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Continuous Density HMMs

The discrete HMM incorporates a discrete probability density function,
captured in the matrix , to describe the probability of outputting a symbol:B
output distribution for state k
b k j( )

k1 2 3 4 5 6 • • •

Signal measurements, or feature vectors, are continuous-valued
N-dimensional vectors. In order to use our discrete HMM technology, we
must vector quantize (VQ) this data — reduce the continuous-valued
vectors to discrete values chosen from a set of M codebook vectors. Initially,
most HMMs were based on VQ front-ends. However, recently, the
continuous density model has become widely accepted.
Let us assume a parametric model of the observation pdf:

The likelihood of generating observation  in state  is defined as:

Note that taking the negative logarithm of will produce a log-likelihood,
or a Mahalanobis-like distance. But what form should we choose for ?
Let’s assume a Gaussian model, of course:

Note that this amounts to assigning a mean and covariance matrix to each
state — a significant increase in complexity. However, shortcuts such as
variance-weighting can help reduce complexity.

Also, note that the log of the output probability at each state becomes
precisely the Mahalanobis distance (principal components) we studied at
the beginning of the course.

M S π 1( ) A f y x ξ i( ) 1 i S≤ ≤,
 
 
 

, , ,
 
 
 

=

y t( ) j

b y t( ) j( ) f y x y t( ) j( )≡

b( )

f ( )

f y x y i( )
1

2π Ci

------------------- 1
2
---– y µi–( )T

Ci
1–

y µi–( )
 
 
 

exp=
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Mixture Distributions

Of course, the output distribution need not be Gaussian, or can be
multimodal to reflect the fact that several contexts are being encoded into a
single state (male/female, allophonic variations of a phoneme, etc.). Much
like a VQ approach can model any discrete distribution, we can use a
weighted linear combination of Gaussians, or a mixture distribution, to
achieve a more complex statistical model.
b y j( ) three mixtures
composite (offset)

y

u1 u2 u3
Mathematically, this is expressed as:

In order for this to be a valid pdf, the mixture coefficients must be
nonnegative and satisfy the constraint:

Note that mixture distributions add significant complexity to the system: m
means and covariances at each state.

Analogous reestimation formulae can be derived by defining the
intermediate quantity:

f y x y i( ) cimℵ y µim Cim,;( )

m 1=

M

∑=

cim
m 1=

M

∑ 1= , 1 i S≤ ≤

ν i t l,;( ) P x t( ) i= y t( )produced in accordance with mixturel( )≡

α y1
t

i,( )β yt 1+
T

i( )

α y1
t

j,( )β yt 1+
T

j( )

j 1=

S

∑
-------------------------------------------------------

cil ℵ ytl
t µil Cil,;( )

cimℵ yt
t µim Cim,;( )

m 1=

M

∑
----------------------------------------------------------×=
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The mixture coefficients can now be reestimated using:

the mean vectors can be reestimated as:

the covariance matrices can be reestimated as:

and the transition probabilities, and initial probabilities are reestimated as
usual.

The Viterbi procedure once again has a simpler interpretation:

and

The mixture coefficient is reestimated as the number of vectors associated
with a given mixture at a given state:

cil
ν i • l,;( )

ν i • m,;( )

m 1=

M

∑
--------------------------------=

µil

ν i t l,;( ) y t( )

t 1=

T

∑
ν i • l,;( )

------------------------------------=

Cil

ν i t l,;( ) y t( ) µil–[ ] y t( ) µil–[ ]T

t 1=

T

∑
ν i • l,;( )

------------------------------------------------------------------------------------=

µil
1

Nil
------- y t( )

t 1=
y t( ) il∼

T

∑=

Cil
1

Nil
------- y t( ) µil–[ ] y t( ) µil–[ ]T

t 1=
y t( ) il∼

T

∑=

cil

Nil

Ni
-------=
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	A probabilistic dependence measure indicates how strongly a feature is associated with its class ...
	When their is a strong dependence, the conditional distribution should be significantly different...
	An example of such a measure is the average mutual information:
	The discrete version of this is:
	Mutual information is closely related to entropy, as we shall see shortly.
	Such distance measures can be used to cluster data and generate vector quantization codebooks. A ...
	Initialization: Choose K centroids
	Recursion: 1. Assign all vectors to their nearest neighbor.
	2. Recompute the centroids as the average of all vectors assigned to the same centroid.
	3. Check the overall distortion. Return to step�1 if some distortion criterion is not met.
	Consider two distributions of discrete random variables:
	Which variable is more unpredictable?
	Now, consider sampling random numbers from a random number generator whose statistics are not kno...
	The answer lies in the shape of the distributions. For the random variable x, each class is equal...
	We can define the information associated with each class, or outcome, as:
	Since , information is a positive quantity. A base�2 logarithm is used so that discrete outcomes ...
	Huh??? Does this make sense?
	Entropy is the expected (average) information across all outcomes:
	Entropy using is also measured in bits, since it is an average of information.
	For example,
	We can generalize this to a joint outcome of N random vectors from the same distribution, which w...
	If the random vectors are statistically independent:
	If the random vectors are independent and indentically distributed:
	We can also define conditional entropy as:
	For continuous distributions, we can define an analogous quantity for entropy:
	(bits)
	A zero-mean Gaussian random variable has maximum entropy (. Why?
	The pairing of random vectors produces less information than the events taken individually. State...
	The shared information between these events is called the mutual information, and is defined as:
	From this definition, we note:
	This emphasizes the idea that this is information shared between these two random variables.
	We can define the average mutual information as the expectation of the mutual information:
	Note that:
	Also note that if and are independent, then there is no mutual information between them.
	Note that to compute mutual information between two random variables, we need a joint probability...
	Consider a window of a signal:
	What does the sampled z-transform assume about the signal outside the window?
	What does the DFT assume about the signal outside the window?
	How do these influence the resulting spectrum that is computed?
	What other assumptions could we make about the signal outside the window? How many valid signals ...
	How about finding the spectrum that corresponds to the signal that matches the measured signal wi...
	What does this imply about the signal outside the window?
	This is known as the principle of maximum entropy spectral estimation. Later we will see how this...
	This recursion gives us great insight into the linear prediction process. First, we note that the...
	Example: p=2
	This reduces the LP problem to and saves an order of magnitude in computational complexity, and m...
	The predictor coefficients and reflection coefficients can be transformed back and forth with no ...
	Predictor to reflection coefficient transformation:
	Reflection to predictor coefficient transformation:
	Also, note that these recursions require intermediate storage for .
	From the above recursions, it is clear that . In fact, there are several important results relate...
	(1)
	(2) , implies a harmonic process (poles on the unit circle).
	(3) implies an unstable synthesis filter (poles outside the unit circle).
	(4)
	This gives us insight into how to determine the LP order during the calculations. We also see tha...
	Goal:�Deconvolve spectrum for multiplicative processes
	In practice, we use the “real” cepstrum:
	and manifest themselves at the low and high end of the “quefrency” domain respectively.
	We can derive cepstral parameters directly from LP analysis:
	To obtain the relationship between cepstral and predictor coefficients, we can differentiate both...
	which simplifies to
	Note that the order of the cepstral coefficients need not be the same as the order of the LP mode...
	Goals: Apply greater weight to perceptually�important portions of the spectrum
	Avoid uniform weighting across the frequency band
	Algorithm:
	• Compute the spectrum via a DFT
	• Warp the spectrum along the Bark frequency scale
	• Convolve the warped spectrum with the power spectrum of the simulated critical band masking cur...
	• Preemphasize by the simulated equal-loudness curve:
	• Simulate the nonlinear relationship between intensity and perceived loudness by performing a cu...
	• Compute an LP model
	Claims:
	• Improved speaker independent recognition performance
	• Increased robustness to noise, variations in the channel, and microphones
	Premise: Time differentiation of features is a noisy process
	Approach: Fit a polynomial to the data to provide a smooth trajectory for a parameter; use closed...
	Static feature:
	Dynamic feature:
	Acceleration feature:
	We can generalize this using an rth order regression analysis:
	where (the number of analysis frames in time length T) is odd,
	and the orthogonal polynomials are of the form:
	This approach has been generalized in such a way that the weights on the coefficients can be esti...
	•�An efficient algorithm for finding the optimal path through a network
	• Endpoints, or boundaries, need not be fixed — numerous types of constraints can be invoked
	Initialization: Choose K centroids
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	2. Recompute the centroids as the average of all vectors assigned to the same centroid.
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	How do we determine the fundamental frequency?
	We use the (statistical) autocorrelation function:
	Other common representations:
	Average Magnitude Difference Function�(AMDF):
	Zero Crossing Rate:
	We would like both systems to be stable. The inverse of a non-minimum phase system is not stable.
	We end with a very simple question:
	Is phase important in speech processing?
	Probability Density Functions:
	Cumulative Distributions:
	Probability of Events:
	Uniform (Unix rand function):
	Gaussian:
	     and�����
	A simple way to form a more generalizable pdf that still obeys some parametric shape is to use a ...
	If we start with a Gaussian pdf:
	The most common form is a Gaussian mixture:
	where
	Obviously this can be generalized to other shapes.
	Such distributions are useful to accommodate multimodal behavior:
	Derivation of the optimal coefficients, however, is most often a nonlinear optimization problem.
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	What is the distance between pt.�a and pt.�b?
	The N-dimensional real Cartesian space,
	denoted is the collection of all N-dimensional
	vectors with real elements. A metric, or distance
	measure, is a real-valued function with three properties:
	:
	1.�.
	2.�
	3.�
	The Minkowski metric of order , or the metric, between and is:
	(the norm of the difference vector).
	Important cases are:
	1. or city block metric (sum of absolute values),
	2. , or Euclidean metric (mean-squared error),
	3. or Chebyshev metric,
	We can similarly define a weighted Euclidean distance metric:
	where:
	 ,�, and .
	Why are Euclidean distances so popular?
	One reason is efficient computation. Suppose we are given a set of reference vectors, , a measure...
	This can be simplified as follows:
	We note the minimum of a square root is the same as the minimum of a square (both are monotonical...
	Therefore,
	Thus, a Euclidean distance is virtually equivalent to a dot product (which can be computed very q...
	Consider the problem of comparing features of different scales:
	Suppose we represent these points in space in two coordinate systems using the transformation:
	System 1:
	and
	System 2:
	and
	The magnitude of the distance has changed. Though the rank-ordering of distances under such linea...
	We can simplify the distance calculation in the transformed space:
	This is just a weighted Euclidean distance.
	Suppose all dimensions of the vector are not equal in importance. For example, suppose one dimens...
	Consider a decomposition of the covariance matrix (which is symmetric):
	where denotes a matrix of eigenvectors of and denotes a diagonal matrix whose elements are the ei...
	The covariance of , is easily shown to be an identity matrix (prove this!)
	We can also show that:
	Again, just a weighted Euclidean distance.
	• If the covariance matrix of the transformed vector is a diagonal matrix, the transformation is ...
	• If the covariance matrix is an identity matrix, the transform is said to be an orthonormal tran...
	• A common approximation to this procedure is to assume the dimensions of are uncorrelated but of...
	The prewhitening transform, , is normally created as a matrix in which the eigenvalues are ordere...
	where
	.
	In this case, a new feature vector can be formed by truncating the transformation matrix to rows....
	A measure of the amount of discriminatory power contained in a feature, or a set of features, can...
	This is the percent of the variance accounted for by the first features.
	Similarly, the coefficients of the eigenvectors tell us which dimensions of the input feature vec...
	Computing a “noise�free” covariance matrix is often difficult. One might attempt to do something ...
	and
	On paper, this appears reasonable. However, often, the complete set of feature vectors contains v...
	Second, the covariance matrix is often ill-conditioned. Stabilization procedures are used in whic...
	But how do we compute eigenvalues and eigenvectors on a computer?
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	By definition
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	Therefore,
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