
9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 1/26

Applause from Medium Sta� and 2,740 others

The Atlantic Follow

Politics, culture, business, science, technology, health, education, global a�airs, and more.
Sep 27, 2017 · 37 min read

The Coming Software Apocalypse
A small group of programmers wants to change how we
code — before catastrophe strikes.

By James Somers

here were six hours during the night of April 10, 2014, when the

entire population of Washington State had no 911 service. People

who called for help got a busy signal. One Seattle woman dialed 911 at

T

Illustration: Lynn Scur�eld

https://medium.com/@MediumStaff
https://medium.com/@TheAtlantic?source=post_header_lockup
https://medium.com/@TheAtlantic?source=post_header_lockup

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 2/26

least 37 times while a stranger was trying to break into her house.

When he �nally crawled into her living room through a window, she

picked up a kitchen knife. The man �ed.

The 911 outage, at the time the largest ever reported, was traced to

software running on a server in Englewood, Colorado. Operated by a

systems provider named Intrado, the server kept a running counter of

how many calls it had routed to 911 dispatchers around the country.

Intrado programmers had set a threshold for how high the counter

could go. They picked a number in the millions.

Shortly before midnight on April 10, the counter exceeded that

number, resulting in chaos. Because the counter was used to generating

a unique identi�er for each call, new calls were rejected. And because

the programmers hadn’t anticipated the problem, they hadn’t created

alarms to call attention to it. Nobody knew what was happening.

Dispatch centers in Washington, California, Florida, the Carolinas, and

Minnesota, serving 11 million Americans, struggled to make sense of

reports that callers were getting busy signals. It took until morning to

realize that Intrado’s software in Englewood was responsible, and that

the �x was to change a single number.

Not long ago, emergency calls were handled locally. Outages were

small and easily diagnosed and �xed. The rise of cellphones and the

promise of new capabilities — what if you could text 911? or send

videos to the dispatcher? — drove the development of a more complex

system that relied on the internet. For the �rst time, there could be such

a thing as a national 911 outage. There have now been four in as many

years.

It’s been said that software is “eating the world.” More and more,

critical systems that were once controlled mechanically, or by people,

are coming to depend on code. This was perhaps never clearer than in

the summer of 2015, when on a single day, United Airlines grounded its

�eet because of a problem with its departure-management system;

trading was suspended on the New York Stock Exchange after an

upgrade; the front page of The Wall Street Journal’s website crashed;

and Seattle’s 911 system went down again, this time because a di�erent

router failed. The simultaneous failure of so many software systems

smelled at �rst of a coordinated cyberattack. Almost more frightening

was the realization, late in the day, that it was just a coincidence.

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 3/26

“When we had electromechanical systems, we used to be able to test

them exhaustively,” says Nancy Leveson, a professor of aeronautics and

astronautics at the Massachusetts Institute of Technology who has been

studying software safety for 35 years. She became known for her report

on the Therac-25, a radiation-therapy machine that killed six patients

because of a software error. “We used to be able to think through all the

things it could do, all the states it could get into.” The

electromechanical interlockings that controlled train movements at

railroad crossings, for instance, only had so many con�gurations; a few

sheets of paper could describe the whole system, and you could run

physical trains against each con�guration to see how it would behave.

Once you’d built and tested it, you knew exactly what you were dealing

with.

Software is di�erent. Just by editing the text in a �le somewhere, the

same hunk of silicon can become an autopilot or an inventory-control

system. This �exibility is software’s miracle, and its curse. Because it

can be changed cheaply, software is constantly changed; and because

it’s unmoored from anything physical — a program that is a thousand

times more complex than another takes up the same actual space — it

tends to grow without bound. “The problem,” Leveson wrote in a book,

“is that we are attempting to build systems that are beyond our ability

to intellectually manage.”

Our standard framework for thinking about engineering failures —

re�ected, for instance, in regulations for medical devices — was

developed shortly after World War II, before the advent of software, for

electromechanical systems. The idea was that you make something

reliable by making its parts reliable (say, you build your engine to

withstand 40,000 takeo�-and-landing cycles) and by planning for the

breakdown of those parts (you have two engines). But software doesn’t

break. Intrado’s faulty threshold is not like the faulty rivet that leads to

the crash of an airliner. The software did exactly what it was told to do.

In fact it did it perfectly. The reason it failed is that it was told to do the

wrong thing. Software failures are failures of understanding, and of

imagination. Intrado actually had a backup router, which, had it been

switched to automatically, would have restored 911 service almost

immediately. But, as described in a report to the FCC, “the situation

occurred at a point in the application logic that was not designed to

perform any automated corrective actions.”

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 4/26

This is the trouble with making things out of code, as opposed to

something physical. “The complexity,” as Leveson puts it, “is invisible to

the eye.”

he attempts now underway to change how we make software all

seem to start with the same premise: Code is too hard to think

about. Before trying to understand the attempts themselves, then, it’s

worth understanding why this might be: what it is about code that

makes it so foreign to the mind, and so unlike anything that came

before it.

Technological progress used to change the way the world looked — you

could watch the roads getting paved; you could see the skylines rise.

Today you can hardly tell when something is remade, because so often

it is remade by code. When you press your foot down on your car’s

accelerator, for instance, you’re no longer controlling anything directly;

there’s no mechanical link from the pedal to the throttle. Instead,

you’re issuing a command to a piece of software that decides how much

air to give the engine. The car is a computer you can sit inside of. The

steering wheel and pedals might as well be keyboard keys.

Like everything else, the car has been computerized to enable new

features. When a program is in charge of the throttle and brakes, it can

slow you down when you’re too close to another car, or precisely

control the fuel injection to help you save on gas. When it controls the

steering, it can keep you in your lane as you start to drift, or guide you

into a parking space. You couldn’t build these features without code. If

you tried, a car might weigh 40,000 pounds, an immovable mass of

clockwork.

Software has enabled us to make the most intricate machines that have

ever existed. And yet we have hardly noticed, because all of that

complexity is packed into tiny silicon chips as millions and millions of

lines of code. But just because we can’t see the complexity doesn’t mean

that it has gone away.

The programmer, the renowned Dutch computer scientist Edsger

Dijkstra wrote in 1988, “has to be able to think in terms of conceptual

hierarchies that are much deeper than a single mind ever needed to

T

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 5/26

face before.” Dijkstra meant this as a warning. As programmers eagerly

poured software into critical systems, they became, more and more, the

linchpins of the built world — and Dijkstra thought they had perhaps

overestimated themselves.

What made programming so di�cult was that it required you to think

like a computer. The strangeness of it was in some sense more vivid in

the early days of computing, when code took the form of literal ones

and zeros. Anyone looking over a programmer’s shoulder as they pored

over line after line like “100001010011” and “000010011110” would

have seen just how alienated the programmer was from the actual

problems they were trying to solve; it would have been impossible to

tell whether they were trying to calculate artillery trajectories or

simulate a game of tic-tac-toe. The introduction of programming

languages like Fortran and C, which resemble English, and tools,

known as “integrated development environments,” or IDEs, that help

correct simple mistakes (like Microsoft Word’s grammar checker but for

code), obscured, though did little to actually change, this basic

alienation — the fact that the programmer didn’t work on a problem

directly, but rather spent their days writing out instructions for a

machine.

“The problem is that software engineers don’t understand the problem

they’re trying to solve, and don’t care to,” says Leveson, the MIT

software-safety expert. The reason is that they’re too wrapped up in

getting their code to work. “Software engineers like to provide all kinds

of tools and stu� for coding errors,” she says, referring to IDEs. “The

serious problems that have happened with software have to do with

requirements, not coding errors.” When you’re writing code that

controls a car’s throttle, for instance, what’s important is the rules

about when and how and by how much to open it. But these systems

have become so complicated that hardly anyone can keep them straight

in their head. “There’s 100 million lines of code in cars now,” Leveson

says. “You just cannot anticipate all these things.”

In September 2007, Jean Bookout was driving on the highway with her

best friend in a Toyota Camry when the accelerator seemed to get

stuck. When she took her foot o� the pedal, the car didn’t slow down.

She tried the brakes but they seemed to have lost their power. As she

swerved toward an o�-ramp going 50 miles per hour, she pulled the

emergency brake. The car left a skid mark 150 feet long before running

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 6/26

into an embankment by the side of the road. The passenger was killed.

Bookout woke up in a hospital a month later.

The incident was one of many in a nearly decade-long investigation into

claims of so-called unintended acceleration in Toyota cars. Toyota

blamed the incidents on poorly designed �oor mats, “sticky” pedals,

and driver error, but outsiders suspected that faulty software might be

responsible. The National Highway Tra�c Safety Administration

enlisted software experts from NASA to perform an intensive review of

Toyota’s code. After nearly 10 months, the NASA team hadn’t found

evidence that software was the cause — but said they couldn’t prove it

wasn’t.

It was during litigation of the Bookout accident that someone �nally

found a convincing connection. Michael Barr, an expert witness for the

plainti�, had a team of software experts spend 18 months with the

Toyota code, picking up where NASA left o�. Barr described what they

found as “spaghetti code,” programmer lingo for software that has

become a tangled mess. Code turns to spaghetti when it accretes over

many years, with feature after feature piling on top of, and being woven

around, what’s already there; eventually the code becomes impossible

to follow, let alone to test exhaustively for �aws.

Using the same model as the Camry involved in the accident, Barr’s

team demonstrated that there were actually more than 10 million ways

for the onboard computer to cause unintended acceleration. They

showed that as little as a single bit �ip — a one in the computer’s

memory becoming a zero or vice versa — could make a car run out of

control. The fail-safe code that Toyota had put in place wasn’t enough

to stop it. “You have software watching the software,” Barr testi�ed. “If

the software malfunctions and the same program or same app that is

crashed is supposed to save the day, it can’t save the day because it is

not working.”

Barr’s testimony made the case for the plainti�, resulting in $3 million

in damages for Bookout and her friend’s family. According to The New

York Times, it was the �rst of many similar cases against Toyota to bring

to trial problems with the electronic throttle-control system, and the

�rst time Toyota was found responsible by a jury for an accident

involving unintended acceleration. The parties decided to settle the

case before punitive damages could be awarded. In all, Toyota recalled

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 7/26

more than 9 million cars, and paid nearly $3 billion in settlements and

�nes related to unintended acceleration.

here will be more bad days for software. It’s important that we get

better at making it, because if we don’t, and as software becomes

more sophisticated and connected — as it takes control of more critical

functions — those days could get worse.

The problem is that programmers are having a hard time keeping up

with their own creations. Since the 1980s, the way programmers work

and the tools they use have changed remarkably little. There is a small

but growing chorus that worries the status quo is unsustainable. “Even

very good programmers are struggling to make sense of the systems

that they are working with,” says Chris Granger, a software developer

who worked as a lead at Microsoft on Visual Studio, an IDE that costs

$1,199 a year and is used by nearly a third of all professional

programmers. He told me that while he was at Microsoft, he arranged

an end-to-end study of Visual Studio, the only one that had ever been

done. For a month and a half, he watched behind a one-way mirror as

people wrote code. “How do they use tools? How do they think?” he

said. “How do they sit at the computer, do they touch the mouse, do

they not touch the mouse? All these things that we have dogma around

that we haven’t actually tested empirically.”

The �ndings surprised him. “Visual Studio is one of the single largest

pieces of software in the world,” he said. “It’s over 55 million lines of

code. And one of the things that I found out in this study is more than

98 percent of it is completely irrelevant. All this work had been put into

this thing, but it missed the fundamental problems that people faced.

And the biggest one that I took away from it was that basically people

are playing computer inside their head.” Programmers were like chess

players trying to play with a blindfold on — so much of their mental

energy is spent just trying to picture where the pieces are that there’s

hardly any left over to think about the game itself.

John Resig had been noticing the same thing among his students. Resig

is a celebrated programmer of JavaScript — software he wrote powers

over half of all websites — and a tech lead at the online-education site

Khan Academy. In early 2012, he had been struggling with the site’s

T

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 8/26

computer-science curriculum. Why was it so hard to learn to program?

The essential problem seemed to be that code was so abstract. Writing

software was not like making a bridge out of popsicle sticks, where you

could see the sticks and touch the glue. To “make” a program, you

typed words. When you wanted to change the behavior of the program,

be it a game, or a website, or a simulation of physics, what you actually

changed was text. So the students who did well — in fact the only ones

who survived at all — were those who could step through that text one

instruction at a time in their head, thinking the way a computer would,

trying to keep track of every intermediate calculation. Resig, like

Granger, started to wonder if it had to be that way. Computers had

doubled in power every 18 months for the last 40 years. Why hadn’t

programming changed?

The fact that the two of them were thinking about the same problem in

the same terms, at the same time, was not a coincidence. They had both

just seen the same remarkable talk, given to a group of software-

engineering students in a Montreal hotel by a computer researcher

named Bret Victor. The talk, which went viral when it was posted

online in February 2012, seemed to be making two bold claims. The

�rst was that the way we make software is fundamentally broken. The

second was that Victor knew how to �x it.

ret victor does not like to write code. “It sounds weird,” he says.

“When I want to make a thing, especially when I want to create

something in software, there’s this initial layer of disgust that I have to

push through, where I’m not manipulating the thing that I want to

make, I’m writing a bunch of text into a text editor.”

“There’s a pretty strong conviction that that’s the wrong way of doing

things.”

Victor has the mien of David Foster Wallace, with a lightning

intelligence that lingers beneath a patina of aw-shucks shyness. He is

40 years old, with traces of gray and a thin, undeliberate beard. His

voice is gentle, mournful almost, but he wants to share what’s in his

head, and when he gets on a roll he’ll seem to skip syllables, as though

outrunning his own vocal machinery.

B

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 9/26

Though he runs a lab that studies the future of computing, he seems

less interested in technology per se than in the minds of the people who

use it. Like any good toolmaker, he has a way of looking at the world

that is equal parts technical and humane. He graduated top of his class

at the California Institute of Technology for electrical engineering, and

then went on, after grad school at the University of California,

Berkeley, to work at a company that develops music synthesizers. It was

a problem perfectly matched to his dual personality: He could spend as

much time thinking about the way a performer makes music with a

keyboard — the way it becomes an extension of their hands — as he

could thinking about the mathematics of digital signal processing.

By the time he gave the talk that made his name, the one that Resig and

Granger saw in early 2012, Victor had �nally landed upon the principle

that seemed to thread through all of his work. (He actually called the

talk “Inventing on Principle.”) The principle was this: “Creators need an

immediate connection to what they’re creating.” The problem with

programming was that it violated the principle. That’s why software

systems were so hard to think about, and so rife with bugs: The

programmer, staring at a page of text, was abstracted from whatever it

was they were actually making.

“Our current conception of what a computer program is,” he said, is

“derived straight from Fortran and ALGOL in the late ’50s. Those

languages were designed for punch cards.” That code now takes the

form of letters on a screen in a language like C or Java (derivatives of

Fortran and ALGOL), instead of a stack of cards with holes in it, doesn’t

make it any less dead, any less indirect.

There is an analogy to word processing. It used to be that all you could

see in a program for writing documents was the text itself, and to

change the layout or font or margins, you had to write special “control

codes,” or commands that would tell the computer that, for instance,

“this part of the text should be in italics.” The trouble was that you

couldn’t see the e�ect of those codes until you printed the document. It

was hard to predict what you were going to get. You had to imagine

how the codes were going to be interpreted by the computer — that is,

you had to play computer in your head.

Then WYSIWYG (pronounced “wizzywig”) came along. It stood for

“What You See Is What You Get.” When you marked a passage as being

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 10/26

in italics, the letters tilted right there on the screen. If you wanted to

change the margin, you could drag a ruler at the top of the screen —

and see the e�ect of that change. The document thereby came to feel

like something real, something you could poke and prod at. Just by

looking you could tell if you’d done something wrong. Control of a

sophisticated system — the document’s layout and formatting engine —

was made accessible to anyone who could click around on a page.

Victor’s point was that programming itself should be like that. For him,

the idea that people were doing important work, like designing

adaptive cruise-control systems or trying to understand cancer, by

staring at a text editor, was appalling. And it was the proper job of

programmers to ensure that someday they wouldn’t have to.

There was precedent enough to suggest that this wasn’t a crazy idea.

Photoshop, for instance, puts powerful image-processing algorithms in

the hands of people who might not even know what an algorithm is. It’s

a complicated piece of software, but complicated in the way a good

synth is complicated, with knobs and buttons and sliders that the user

learns to play like an instrument. Squarespace, a company that is

perhaps best known for advertising aggressively on podcasts, makes a

tool that lets users build websites by pointing and clicking, instead of by

writing code in HTML and CSS. It is powerful enough to do work that

once would have been done by a professional web designer.

But those were just a handful of examples. The overwhelming reality

was that when someone wanted to do something interesting with a

computer, they had to write code. Victor, who is something of an

idealist, saw this not so much as an opportunity but as a moral failing of

programmers at large. His talk was a call to arms.

At the heart of it was a series of demos that tried to show just how

primitive the available tools were for various problems — circuit design,

computer animation, debugging algorithms — and what better ones

might look like. His demos were virtuosic. The one that captured

everyone’s imagination was, ironically enough, the one that on its face

was the most trivial. It showed a split screen with a game that looked

like Mario on one side and the code that controlled it on the other. As

Victor changed the code, things in the game world changed: He

decreased one number, the strength of gravity, and the Mario character

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 11/26

�oated; he increased another, the player’s speed, and Mario raced

across the screen.

Suppose you wanted to design a level where Mario, jumping and

bouncing o� of a turtle, would just make it into a small passageway.

Game programmers were used to solving this kind of problem in two

stages: First, you stared at your code — the code controlling how high

Mario jumped, how fast he ran, how bouncy the turtle’s back was — and

made some changes to it in your text editor, using your imagination to

predict what e�ect they’d have. Then, you’d replay the game to see

what actually happened.

CUSEC / Vimeo

Victor wanted something more immediate. “If you have a process in

time,” he said, referring to Mario’s path through the level, “and you

want to see changes immediately, you have to map time to space.” He

hit a button that showed not just where Mario was right now, but where

he would be at every moment in the future: a curve of shadow Marios

stretching o� into the far distance. What’s more, this projected path

was reactive: When Victor changed the game’s parameters, now

controlled by a quick drag of the mouse, the path’s shape changed. It

was like having a god’s-eye view of the game. The whole problem had

been reduced to playing with di�erent parameters, as if adjusting levels

on a stereo receiver, until you got Mario to thread the needle. With the

right interface, it was almost as if you weren’t working with code at all;

you were manipulating the game’s behavior directly.

When the audience �rst saw this in action, they literally gasped. They

knew they weren’t looking at a kid’s game, but rather the future of their

industry. Mostsoftware involved behavior that unfolded, in complex

ways, over time, and Victor had shown that if you were imaginative

enough, you could develop ways to see that behavior and change it, as

if playing with it in your hands. One programmer who saw the talk

wrote later: “Suddenly all of my tools feel obsolete.”

hen John Resig saw the “Inventing on Principle” talk, he scrapped

his plans for the Khan Academy programming curriculum. He

wanted the site’s programming exercises to work just like Victor’s

W

https://vimeo.com/36579366

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 12/26

demos. On the left-hand side you’d have the code, and on the right, the

running program: a picture or game or simulation. If you changed the

code, it’d instantly change the picture. “In an environment that is truly

responsive,” Resig wrote about the approach, “you can completely

change the model of how a student learns … [They] can now

immediately see the result and intuit how underlying systems

inherently work without ever following an explicit explanation.” Khan

Academy has become perhaps the largest computer-programming class

in the world, with a million students, on average, actively using the

program each month.

Chris Granger, who had worked at Microsoft on Visual Studio, was

likewise inspired. Within days of seeing a video of Victor’s talk, in

January of 2012, he built a prototype of a new programming

environment. Its key capability was that it would give you instant

feedback on your program’s behavior. You’d see what your system was

doing right next to the code that controlled it. It was like taking o� a

blindfold. Granger called the project “Light Table.”

In April of 2012, he sought funding for Light Table on Kickstarter. In

programming circles, it was a sensation. Within a month, the project

raised more than $200,000. The ideas spread. The notion of liveness, of

being able to see data �owing through your program instantly, made its

way into �agship programming tools o�ered by Google and Apple. The

default language for making new iPhone and Mac apps, called Swift,

was developed by Apple from the ground up to support an

environment, called Playgrounds, that was directly inspired by Light

Table.

But seeing the impact that his talk ended up having, Bret Victor was

disillusioned. “A lot of those things seemed like misinterpretations of

what I was saying,” he said later. He knew something was wrong when

people began to invite him to conferences to talk about programming

tools. “Everyone thought I was interested in programming

environments,” he said. Really he was interested in how people see and

understand systems — as he puts it, in the “visual representation of

dynamic behavior.” Although code had increasingly become the tool of

choice for creating dynamic behavior, it remained one of the worst tools

for understanding it. The point of “Inventing on Principle” was to show

that you could mitigate that problem by making the connection

between a system’s behavior and its code immediate.

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 13/26

In a pair of later talks, “Stop Drawing Dead Fish” and “Drawing

Dynamic Visualizations,” Victor went one further. He demoed two

programs he’d built — the �rst for animators, the second for scientists

trying to visualize their data — each of which took a process that used

to involve writing lots of custom code and reduced it to playing around

in a WYSIWYG interface. Victor suggested that the same trick could be

pulled for nearly every problem where code was being written today.

“I’m not sure that programming has to exist at all,” he told me. “Or at

least software developers.” In his mind, a software developer’s proper

role was to create tools that removed the need for software developers.

Only then would people with the most urgent computational problems

be able to grasp those problems directly, without the intermediate

muck of code.

Of course, to do that, you’d have to get programmers themselves on

board. In a recent essay, Victor implored professional software

developers to stop pouring their talent into tools for building apps like

Snapchat and Uber. “The inconveniences of daily life are not the

signi�cant problems,” he wrote. Instead, they should focus on scientists

and engineers — as he put it to me, “these people that are doing work

that actually matters, and critically matters, and using really, really bad

tools.” Exciting work of this sort, in particular a class of tools for

“model-based design,” was already underway, he wrote, and had been

for years, but most programmers knew nothing about it.

f you really look hard at all the industrial goods that you’ve got out

there, that you’re using, that companies are using, the only non-

industrial stu� that you have inside this is the code.” Eric Bantégnie is

the founder of Esterel Technologies (now owned by ANSYS), a French

company that makes tools for building safety-critical software. Like

Victor, Bantégnie doesn’t think engineers should develop large systems

by typing millions of lines of code into an IDE. “Nobody would build a

car by hand,” he says. “Code is still, in many places, handicraft. When

you’re crafting manually 10,000 lines of code, that’s okay. But you have

systems that have 30 million lines of code, like an Airbus, or 100

million lines of code, like your Tesla or high-end cars — that’s becoming

very, very complicated.”

“I

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 14/26

Bantégnie’s company is one of the pioneers in the industrial use of

model-based design, in which you no longer write code directly.

Instead, you create a kind of �owchart that describes the rules your

program should follow (the “model”), and the computer generates

code for you based on those rules. If you were making the control

system for an elevator, for instance, one rule might be that when the

door is open, and someone presses the button for the lobby, you should

close the door and start moving the car. In a model-based design tool,

you’d represent this rule with a small diagram, as though drawing the

logic out on a whiteboard, made of boxes that represent di�erent states

— like “door open,” “moving,” and “door closed” — and lines that de�ne

how you can get from one state to the other. The diagrams make the

system’s rules obvious: Just by looking, you can see that the only way to

get the elevator moving is to close the door, or that the only way to get

the door open is to stop.

It’s not quite Photoshop. The beauty of Photoshop, of course, is that the

picture you’re manipulating on the screen is the �nal product. In

model-based design, by contrast, the picture on your screen is more like

a blueprint. Still, making software this way is qualitatively di�erent

than traditional programming. In traditional programming, your task is

to take complex rules and translate them into code; most of your

energy is spent doing the translating, rather than thinking about the

rules themselves. In the model-based approach, all you have is the

rules. So that’s what you spend your time thinking about. It’s a way of

focusing less on the machine and more on the problem you’re trying to

get it to solve.

“Typically the main problem with software coding — and I’m a coder

myself,” Bantégnie says, “is not the skills of the coders. The people

know how to code. The problem is what to code. Because most of the

requirements are kind of natural language, ambiguous, and a

requirement is never extremely precise, it’s often understood di�erently

by the guy who’s supposed to code.”

On this view, software becomes unruly because the media for

describing what software should do — conversations, prose

descriptions, drawings on a sheet of paper — are too di�erent from the

media describing what software does do, namely, code itself. Too much

is lost going from one to the other. The idea behind model-based design

is to close the gap. The very same model is used both by system

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 15/26

designers to express what they want and by the computer to

automatically generate code.

Of course, for this approach to succeed, much of the work has to be

done well before the project even begins. Someone �rst has to build a

tool for developing models that are natural for people — that feel just

like the notes and drawings they’d make on their own — while still

being unambiguous enough for a computer to understand. They have

to make a program that turns these models into real code. And �nally

they have to prove that the generated code will always do what it’s

supposed to. “We have bene�ted from fortunately 20 years of initial

background work,” Bantégnie says.

Esterel Technologies, which was acquired by ANSYS in 2012, grew out

of research begun in the 1980s by the French nuclear and aerospace

industries, who worried that as safety-critical code ballooned in

complexity, it was getting harder and harder to keep it free of bugs. “I

started in 1988,” says Emmanuel Ledinot, the Head of Scienti�c Studies

for Dassault Aviation, a French manufacturer of �ghter jets and

business aircraft. “At the time, I was working on military avionics

systems. And the people in charge of integrating the systems, and

debugging them, had noticed that the number of bugs was increasing.”

The 80s had seen a surge in the number of onboard computers on

planes. Instead of a single �ight computer, there were now dozens,

each responsible for highly specialized tasks related to control,

navigation, and communications. Coordinating these systems to �y the

plane as data poured in from sensors and as pilots entered commands

required a symphony of perfectly timed reactions. “The handling of

these hundreds of and even thousands of possible events in the right

order, at the right time,” Ledinot says, “was diagnosed as the main

cause of the bug in�ation.”

Ledinot decided that writing such convoluted code by hand was no

longer sustainable. It was too hard to understand what it was doing,

and almost impossible to verify that it would work correctly. He went

looking for something new. “You must understand that to change tools

is extremely expensive in a process like this,” he said in a talk. “You

don’t take this type of decision unless your back is against the wall.”

He began collaborating with Gerard Berry, a computer scientist at

INRIA, the French computing-research center, on a tool called Esterel

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 16/26

— a portmanteau of the French for “real-time.” The idea behind Esterel

was that while traditional programming languages might be good for

describing simple procedures that happened in a predetermined order

— like a recipe — if you tried to use them in systems where lots of events

could happen at nearly any time, in nearly any order — like in the

cockpit of a plane — you inevitably got a mess. And a mess in control

software was dangerous. In a paper, Berry went as far as to predict that

“low-level programming techniques will not remain acceptable for

large safety-critical programs, since they make behavior understanding

and analysis almost impracticable.”

Esterel was designed to make the computer handle this complexity for

you. That was the promise of the model-based approach: Instead of

writing normal programming code, you created a model of the system’s

behavior — in this case, a model focused on how individual events

should be handled, how to prioritize events, which events depended on

which others, and so on. The model becomes the detailed blueprint

that the computer would use to do the actual programming.

Ledinot and Berry worked for nearly 10 years to get Esterel to the point

where it could be used in production. “It was in 2002 that we had the

�rst operational software-modeling environment with automatic code

generation,” Ledinot told me, “and the �rst embedded module in

Rafale, the combat aircraft.” Today, the ANSYS SCADE product family

(for “safety-critical application development environment”) is used to

generate code by companies in the aerospace and defense industries, in

nuclear power plants, transit systems, heavy industry, and medical

devices. “My initial dream was to have SCADE-generated code in every

plane in the world,” Bantégnie, the founder of Esterel Technologies,

says, “and we’re not very far o� from that objective.” Nearly all safety-

critical code on the Airbus A380, including the system controlling the

plane’s �ight surfaces, was generated with ANSYS SCADE products.

Part of the draw for customers, especially in aviation, is that while it is

possible to build highly reliable software by hand, it can be a Herculean

e�ort. Ravi Shivappa, the VP of group software engineering at Meggitt

PLC, an ANSYS customer which builds components for airplanes, like

pneumatic �re detectors for engines, explains that traditional projects

begin with a massive requirements document in English, which

speci�es everything the software should do. (A requirement might be

something like, “When the pressure in this section rises above a

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 17/26

threshold, open the safety valve, unless the manual-override switch is

turned on.”) The problem with describing the requirements this way is

that when you implement them in code, you have to painstakingly

check that each one is satis�ed. And when the customer changes the

requirements, the code has to be changed, too, and tested extensively

to make sure that nothing else was broken in the process.

The cost is compounded by exacting regulatory standards. The FAA is

fanatical about software safety. The agency mandates that every

requirement for a piece of safety-critical software be traceable to the

lines of code that implement it, and vice versa. So every time a line of

code changes, it must be retraced to the corresponding requirement in

the design document, and you must be able to demonstrate that the

code actually satis�es the requirement. The idea is that if something

goes wrong, you’re able to �gure out why; the practice brings order and

accountability to large codebases. But, Shivappa says, “it’s a very labor-

intensive process.” He estimates that before they used model-based

design, on a two-year-long project only two to three months was spent

writing code — the rest was spent working on the documentation.

As Bantégnie explains, the beauty of having a computer turn your

requirements into code, rather than a human, is that you can be sure —

in fact you can mathematically prove — that the generated code actually

satis�es those requirements. Much of the bene�t of the model-based

approach comes from being able to add requirements on the �y while

still ensuring that existing ones are met; with every change, the

computer can verify that your program still works. You’re free to tweak

your blueprint without fear of introducing new bugs. Your code is, in

FAA parlance, “correct by construction.”

Still, most software, even in the safety-obsessed world of aviation, is

made the old-fashioned way, with engineers writing their requirements

in prose and programmers coding them up in a programming language

like C. As Bret Victor made clear in his essay, model-based design is

relatively unusual. “A lot of people in the FAA think code generation is

magic, and hence call for greater scrutiny,” Shivappa told me.

Most programmers feel the same way. They like code. At least they

understand it. Tools that write your code for you and verify its

correctness using the mathematics of “�nite-state machines” and

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 18/26

“recurrent systems” sound esoteric and hard to use, if not just too good

to be true.

It is a pattern that has played itself out before. Whenever programming

has taken a step away from the writing of literal ones and zeros, the

loudest objections have come from programmers. Margaret Hamilton,

a celebrated software engineer on the Apollo missions — in fact the

coiner of the phrase “software engineering” — told me that during her

�rst year at the Draper lab at MIT, in 1964, she remembers a meeting

where one faction was �ghting the other about transitioning away from

“some very low machine language,” as close to ones and zeros as you

could get, to “assembly language.” “The people at the lowest level were

�ghting to keep it. And the arguments were so similar: ‘Well how do we

know assembly language is going to do it right?’”

“Guys on one side, their faces got red, and they started screaming,” she

said. She said she was “amazed how emotional they got.”

Emmanuel Ledinot, of Dassault Aviation, pointed out that when

assembly language was itself phased out in favor of the programming

languages still popular today, like C, it was the assembly programmers

who were skeptical this time. No wonder, he said, that “people are not

so easily transitioning to model-based software development: They

perceive it as another opportunity to lose control, even more than they

have already.”

The bias against model-based design, sometimes known as model-

driven engineering, or MDE, is in fact so ingrained that according to a

recent paper, “Some even argue that there is a stronger need to

investigate people’s perception of MDE than to research new MDE

technologies.”

Which sounds almost like a joke, but for proponents of the model-based

approach, it’s an important point: We already know how to make

complex software reliable, but in so many places, we’re choosing not to.

Why?

2011, Chris Newcombe had been working at Amazon for almost

seven years, and had risen to be a principal engineer. He hadIn

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 19/26

worked on some of the company’s most critical systems, including the

retail-product catalog and the infrastructure that managed every

Kindle device in the world. He was a leader on the highly prized

Amazon Web Services team, which maintains cloud servers for some of

the web’s biggest properties, like Net�ix, Pinterest, and Reddit. Before

Amazon, he’d helped build the backbone of Steam, the world’s largest

online-gaming service. He is one of those engineers whose work quietly

keeps the internet running. The products he’d worked on were

considered massive successes. But all he could think about was that

buried deep in the designs of those systems were disasters waiting to

happen.

“Human intuition is poor at estimating the true probability of

supposedly ‘extremely rare’ combinations of events in systems

operating at a scale of millions of requests per second,” he wrote in a

paper. “That human fallibility means that some of the more subtle,

dangerous bugs turn out to be errors in design; the code faithfully

implements the intended design, but the design fails to correctly

handle a particular ‘rare’ scenario.”

Newcombe was convinced that the algorithms behind truly critical

systems — systems storing a signi�cant portion of the web’s data, for

instance — ought to be not just good, but perfect. A single subtle bug

could be catastrophic. But he knew how hard bugs were to �nd,

especially as an algorithm grew more complex. You could do all the

testing you wanted and you’d never �nd them all.

This is why he was so intrigued when, in the appendix of a paper he’d

been reading, he came across a strange mixture of math and code — or

what looked like code — that described an algorithm in something

called “TLA+.” The surprising part was that this description was said to

be mathematically precise: An algorithm written in TLA+ could in

principle be proven correct. In practice, it allowed you to create a

realistic model of your problem and test it not just thoroughly, but

exhaustively. This was exactly what he’d been looking for: a language

for writing perfect algorithms.

TLA+, which stands for “Temporal Logic of Actions,” is similar in spirit

to model-based design: It’s a language for writing down the

requirements — TLA+ calls them “speci�cations” — of computer

programs. These speci�cations can then be completely veri�ed by a

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 20/26

computer. That is, before you write any code, you write a concise

outline of your program’s logic, along with the constraints you need it

to satisfy (say, if you were programming an ATM, a constraint might be

that you can never withdraw the same money twice from your checking

account). TLA+ then exhaustively checks that your logic does, in fact,

satisfy those constraints. If not, it will show you exactly how they could

be violated.

The language was invented by Leslie Lamport, a Turing Award–winning

computer scientist. With a big white beard and scru�y white hair, and

kind eyes behind large glasses, Lamport looks like he might be one of

the friendlier professors at the American Hogwarts. Now at Microsoft

Research, he is known as one of the pioneers of the theory of

“distributed systems,” which describes any computer system made of

multiple parts that communicate with each other. Lamport’s work laid

the foundation for many of the systems that power the modern web.

For Lamport, a major reason today’s software is so full of bugs is that

programmers jump straight into writing code. “Architects draw detailed

plans before a brick is laid or a nail is hammered,” he wrote in an

article. “But few programmers write even a rough sketch of what their

programs will do before they start coding.” Programmers are drawn to

the nitty-gritty of coding because code is what makes programs go;

spending time on anything else can seem like a distraction. And there is

a patient joy, a meditative kind of satisfaction, to be had from puzzling

out the micro-mechanics of code. But code, Lamport argues, was never

meant to be a medium for thought. “It really does constrain your ability

to think when you’re thinking in terms of a programming language,” he

says. Code makes you miss the forest for the trees: It draws your

attention to the working of individual pieces, rather than to the bigger

picture of how your program �ts together, or what it’s supposed to do

— and whether it actually does what you think. This is why Lamport

created TLA+. As with model-based design, TLA+ draws your focus to

the high-level structure of a system, its essential logic, rather than to

the code that implements it.

Newcombe and his colleagues at Amazon would go on to use TLA+ to

�nd subtle, critical bugs in major systems, including bugs in the core

algorithms behind S3, regarded as perhaps the most reliable storage

engine in the world. It is now used widely at the company. In the tiny

universe of people who had ever used TLA+, their success was not so

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 21/26

unusual. An intern at Microsoft used TLA+ to catch a bug that could

have caused every Xbox in the world to crash after four hours of use.

Engineers at the European Space Agency used it to rewrite, with 10

times less code, the operating system of a probe that was the �rst to

ever land softly on a comet. Intel uses it regularly to verify its chips.

But TLA+ occupies just a small, far corner of the mainstream, if it can

be said to take up any space there at all. Even to a seasoned engineer

like Newcombe, the language read at �rst as bizarre and esoteric — a

zoo of symbols. For Lamport, this is a failure of education. Though

programming was born in mathematics, it has since largely been

divorced from it. Most programmers aren’t very �uent in the kind of

math — logic and set theory, mostly — that you need to work with

TLA+. “Very few programmers — and including very few teachers of

programming — understand the very basic concepts and how they’re

applied in practice. And they seem to think that all they need is code,”

Lamport says. “The idea that there’s some higher level than the code in

which you need to be able to think precisely, and that mathematics

actually allows you to think precisely about it, is just completely

foreign. Because they never learned it.”

Lamport sees this failure to think mathematically about what they’re

doing as the problem of modern software development in a nutshell:

The stakes keep rising, but programmers aren’t stepping up — they

haven’t developed the chops required to handle increasingly complex

problems. “In the 15th century,” he said, “people used to build

cathedrals without knowing calculus, and nowadays I don’t think you’d

allow anyone to build a cathedral without knowing calculus. And I

would hope that after some suitably long period of time, people won’t

be allowed to write programs if they don’t understand these simple

things.”

Newcombe isn’t so sure that it’s the programmer who is to blame. “I’ve

heard from Leslie that he thinks programmers are afraid of math. I’ve

found that programmers aren’t aware — or don’t believe — that math

can help them handle complexity. Complexity is the biggest challenge

for programmers.” The real problem in getting people to use TLA+, he

said, was convincing them it wouldn’t be a waste of their time.

Programmers, as a species, are relentlessly pragmatic. Tools like TLA+

reek of the ivory tower. When programmers encounter “formal

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 22/26

methods” (so called because they involve mathematical, “formally”

precise descriptions of programs), their deep-seated instinct is to recoil.

Most programmers who took computer science in college have brie�y

encountered formal methods. Usually they’re demonstrated on

something trivial, like a program that counts up from zero; the

student’s job is to mathematically prove that the program does, in fact,

count up from zero.

“I needed to change people’s perceptions on what formal methods

were,” Newcombe told me. Even Lamport himself didn’t seem to fully

grasp this point: Formal methods had an image problem. And the way

to �x it wasn’t to implore programmers to change — it was to change

yourself. Newcombe realized that to bring tools like TLA+ to the

programming mainstream, you had to start speaking their language.

For one thing, he said that when he was introducing colleagues at

Amazon to TLA+ he would avoid telling them what it stood for,

because he was afraid the name made it seem unnecessarily

forbidding: “Temporal Logic of Actions” has exactly the kind of

highfalutin ring to it that plays well in academia, but puts o� most

practicing programmers. He tried also not to use the terms “formal,”

“veri�cation,” or “proof,” which reminded programmers of tedious

classroom exercises. Instead, he presented TLA+ as a new kind of

“pseudocode,” a stepping-stone to real code that allowed you to

exhaustively test your algorithms — and that got you thinking precisely

early on in the design process. “Engineers think in terms of debugging

rather than ‘veri�cation,’” he wrote, so he titled his internal talk on the

subject to fellow Amazon engineers “Debugging Designs.” Rather than

bemoan the fact that programmers see the world in code, Newcombe

embraced it. He knew he’d lose them otherwise. “I’ve had a bunch of

people say, ‘Now I get it,’” Newcombe says.

He has since left Amazon for Oracle, where he’s been able to convince

his new colleagues to give TLA+ a try. For him, using these tools is now

a matter of responsibility. “We need to get better at this,” he said.

“I’m self-taught, been coding since I was nine, so my instincts were to

start coding. That was my only — that was my way of thinking: You’d

sketch something, try something, you’d organically evolve it.” In his

view, this is what many programmers today still do. “They google, and

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 23/26

they look on Stack Over�ow” (a popular website where programmers

answer each other’s technical questions) “and they get snippets of code

to solve their tactical concern in this little function, and they glue it

together, and iterate.”

“And that’s completely �ne until you run smack into a real problem.”

the summer of 2015, a pair of American security researchers,

Charlie Miller and Chris Valasek, convinced that car

manufacturers weren’t taking software �aws seriously enough,

demonstrated that a 2014 Jeep Cherokee could be remotely controlled

by hackers. They took advantage of the fact that the car’s

entertainment system, which has a cellular connection (so that, for

instance, you can start your car with your iPhone), was connected to

more central systems, like the one that controls the windshield wipers,

steering, acceleration, and brakes (so that, for instance, you can see

guidelines on the rearview screen that respond as you turn the wheel).

As proof of their attack, which they developed on nights and weekends,

they hacked into Miller’s car while a journalist was driving it on the

highway, and made it go haywire; the journalist, who knew what was

coming, panicked when they cut the engines, forcing him to a slow

crawl on a stretch of road with no shoulder to escape to.

Although they didn’t actually create one, they showed that it was

possible to write a clever piece of software, a “vehicle worm,” that

would use the onboard computer of a hacked Jeep Cherokee to scan for

and hack others; had they wanted to, they could have had

simultaneous access to a nationwide �eet of vulnerable cars and SUVs.

(There were at least �ve Fiat Chrysler models a�ected, including the

Jeep Cherokee.) One day they could have told them all to, say,

suddenly veer left or cut the engines at high speed.

“We need to think about software di�erently,” Valasek told me. Car

companies have long assembled their �nal product from parts made by

hundreds of di�erent suppliers. But where those parts were once purely

mechanical, they now, as often as not, come with millions of lines of

code. And while some of this code — for adaptive cruise control, for

auto braking and lane assist — has indeed made cars safer (“The safety

features on my Jeep have already saved me countless times,” says

In

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 24/26

Miller), it has also created a level of complexity that is entirely new.

And it has made possible a new kind of failure.

“There are lots of bugs in cars,” Gerard Berry, the French researcher

behind Esterel, said in a talk. “It’s not like avionics — in avionics it’s

taken very seriously. And it’s admitted that software is di�erent from

mechanics.” The automotive industry is perhaps among those that

haven’t yet realized they are actually in the software business.

“We don’t in the automaker industry have a regulator for software safety

that knows what it’s doing,” says Michael Barr, the software expert who

testi�ed in the Toyota case. NHTSA, he says, “has only limited software

expertise. They’ve come at this from a mechanical history.” The same

regulatory pressures that have made model-based design and code

generation attractive to the aviation industry have been slower to come

to car manufacturing. Emmanuel Ledinot, of Dassault Aviation,

speculates that there might be economic reasons for the di�erence, too.

Automakers simply can’t a�ord to increase the price of a component by

even a few cents, since it is multiplied so many millionfold; the

computers embedded in cars therefore have to be slimmed down to the

bare minimum, with little room to run code that hasn’t been hand-

tuned to be as lean as possible. “Introducing model-based software

development was, I think, for the last decade, too costly for them.”

One suspects the incentives are changing. “I think the autonomous car

might push them,” Ledinot told me — “ISO 26262 and the autonomous

car might slowly push them to adopt this kind of approach on critical

parts.” (ISO 26262 is a safety standard for cars published in 2011.) Barr

said much the same thing: In the world of the self-driving car, software

can’t be an afterthought. It can’t be built like today’s airline-reservation

systems or 911 systems or stock-trading systems. Code will be put in

charge of hundreds of millions of lives on the road and it has to work.

That is no small task.

“Computing is fundamentally invisible,” Gerard Berry said in his talk.

“When your tires are �at, you look at your tires, they are �at. When

your software is broken, you look at your software, you see nothing.”

“So that’s a big problem.”

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 25/26

This story was originally published in The Atlantic.

https://www.theatlantic.com/technology/archive/2017/09/saving-the-world-from-code/540393/

9/16/2018 The Coming Software Apocalypse – The Atlantic – Medium

https://medium.com/the-atlantic/the-coming-software-apocalypse-4ffb43f3b288 26/26

