ECE 1111	Quiz No. 7	Page 1 of 2

Name: 	
Do your work in this directory:
/data/courses/ece_1111/current/quizzes/qu_07/lastname_firstname/p01
Make sure your parent directory has the correct permissions and you have the standard files (Makefile, p01.h, p01.cc, p01_00.cc, p01.o, p01.exe) in your /p01 directory. I will type “make clean” to delete your existing binary, “make” to compile your program, and “p01.exe” to execute it. There will be a zero tolerance for deviations from this on this quiz.
You must use the buffer shifting approach described below. You must implement this using fopen/fread/fclose. You must implement this in C. If you turn in C++ code or use concepts we haven’t covered in class (e.g., cin, cout, or some C++ classes), you will receive a grade of 0. If you read the entire signal into memory first, you will receive a grade of 0. You should only read each value in the file once. Seeking backward and/or forward in the file will result in a grade of 0. I want this implemented as a streaming application that can read arbitrarily large amounts of data.
Your task is to write a program that reads a 16-bit binary file in small chunks. The interface must be as follows:
p01.exe myfile.dat 2 6
Argv[1] represents the filename; argv[2], which we will refer to as N, represents the number of samples in a frame; and argv[3], which we will refer to as M, represents the number of samples in a window. Your program should work for any combination of N and M.
In this problem, we will implement what we call a right-aligned buffer. This means it looks ahead samples. You must read samples at a time. You must retain samples after each read.
Let me demonstrate with an example. Suppose you have the following signal:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Suppose N = 2 and M = 6. Your first frame corresponds to the samples [1,2]. The ‘window’ corresponding to this frame will be the samples [1,2,3,4,5,6], and these will be the samples you print to stdout.
The second frame corresponds to [3,4]. The window of samples that corresponds to this frame are [3,4,5,6,7,8].
The third frame corresponds to [5,6]. The window of samples that corresponds to this frame are [5,6,7,8,9,10].
Note that in the above example when you hit the end of file you only have half a frame. Our general rule is if there is more than half a frame of data, you output the frame. If the number of samples in the last frame is greater or equal to (N/2) rounded down, you output that window. Otherwise you do not produce any output for the last few samples in the file.
Your program should work for any combination of N and M (e.g., N<M, N>M). It should produce meaningful error messages if N or M are negative, or the file doesn’t exist or can’t be opened. Your program should handle the end of file by assuming signal values of 0. For the last windows that extend beyond the end of the file, zero-stuff the signal (which means you use a value of 0 for values at the beginning or end of the file. Your program must handle all the edge cases. I will test it for many combinations of M and N. Both can be even or odd.
To implement this, create a buffer M samples long. Using the above example, cycle the data through the buffer this way:
Initialization:			[0, 0, 0, 0, 0, 0]
Pre-fetch the first frame:	[1, 2, 3, 4, *, *]
Read the next N samples:		[1, 2, 3, 4, 5, 6]
Shift the buffer by N samples:	[3, 4, 5, 6, *, *]
Read the next N samples:		[3, 4, 5, 6, 7, 8]
Shift the buffer by N samples:	[5, 6, 7, 8, *, *]
Read the next N samples:		[5, 6, 7, 8, 9, 10]
... iterate until there is no more data to read ...
Shifts should be done efficiently using memory move functions. Do not use circular buffers or other such data structures.
The technique of reading data from a file in this way is referred to as framing and windowing. In real code, the window can be center-aligned, left-aligned or right-aligned. In this example, the window is right-aligned. This type of I/O is quite common in signal processing and machine learning.
ECE 1111: Engineering Computation I		Fall 2025
