4th Bit

A binary number is a combination of 1s and 0s. Its n^{th} least significant digit is the the n^{th} digit starting from the right starting with 1s. Given a decimal number, convert it to binary and determine the value of the the 4^{th} least significant digit.

Example

number = 23

- Convert the decimal number 23 to binary number: $23_{10} = 2^{4} + 2^{2} + 2^{1} + 2^{0} = (10111)_{2}$.
- The value of the 4th index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s):

int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Constraints

0 ≤ number < 2³¹

► Input Format for Custom Testing

▼ Sample Case 0

Sample Input 0

```
STDIN Function
----
32 → number = 32
```

Sample Output 0

0

Explanation 0

- Convert the decimal number 32 to binary number: $32_{10} = (100000)_2$.
- The value of the 4th index from the right in the binary representation is 0.

► Sample Case 1