Lab No. 14: Application Programming	Page 2 of 2
ECE 1111: Engineering Computation I
Laboratory No. 14: Application Programming

	Problem
	Cumulative Points
	Score

	0
	50
	Attend the lab and make a reasonable attempt at solving the problems.

	1
	25
	

	2
	25
	

	Total
	100
	

Notes:
(1) You must code your exam solution in Python.
(2) For this exam you are allowed to open a terminal window on your computer, you are allowed to web surf with Google, but you cannot use online chat or other interactive services. You can use software tools like ChatGPT to solve particular problems, but your code must be your own original work and should use concepts discussed in this course.
(3) Your code and results should be placed in subdirectories p01 and p02.
(4) You must work the problems in order – you cannot skip a problem. For example, you cannot complete p02 until you have finished p01.
(5) If p01 doesn’t work, then you will not receive credit for p02.
(6) Most importantly, only turn in code that you are 100% sure works and is fully debugged. If you turn in a program that doesn’t work, you get a 50. If you start p02 and determine your code doesn’t work, rename the directory “_p02” so I know you are not submitting this as part of your solution.

P01: Write a function, named convert_mask(), that converts a text string of the form “1, 5-7, 3” to an ordered list “1, 3, 5, 6, 7”. Some test cases are below:
“1, 3, 2” => “1, 2, 3”
“4-6, 0, 3-5” => “0, 3, 4, 5, 6”
“1, 2, 3” => “1, 2, 3”
Provide a driver script, p01.py, that operates like this:
ece-000_[1]: p01.py “4-6, 0, 3-5”
0, 3, 4, 5, 6
You can assume the input numbers are positive integers.
P02: The following file:
/data/courses/ece_1111/resources/data/binary/f03.dat
contains binary data. The format of the file is a bit unusual. The file consists of records. Each record contains a variable number of characters terminated with a null character, followed by a 16-bit signed integer value, and then a 32-bit float value. The file can contain a variable number of records.
For example, the above file contains these records:
 “a”, 1, 1.0
“abc”, 2, 2.0
“abcde”, 3, 3.0
We can verify this with od:
ece-000_[1]: d f03.dat
-rw-rw-r--. 1 picone ece_1111 30 Dec 5 19:18 f03.dat
ece-000_[1]: od -c -j 0 -N 2 f03.dat; od -s -j 2 -N 2 f03.dat; od -f -j 4 -N 4 f03.dat;
0000000 a \0
0000002
0000002 1
0000004
0000004 1
0000010
ece-000_[1]: od -c -j 8 -N 4 f03.dat; od -s -j 12 -N 2 f03.dat; od -f -j 14 -N 4 f03.dat;
0000010 a b c \0
0000014
0000014 2
0000016
0000016 2
0000022
ece-000_[1]: od -c -j 18 -N 6 f03.dat; od -s -j 24 -N 2 f03.dat; od -f -j 26 -N 4 f03.dat;
0000022 a b c d e \0
0000030
0000030 3
0000032
0000032 3
0000036
Write a program, named p02.py, that reads the records identified by the mask and prints them to stdout:
p02.py <filename> <mask>
For example, this command:
p02.py /data/courses/ece_1111/resources/data/binary/f03.dat “0-2”
prints:
“a”, 1, 1.0
“abc”, 2, 2.0
“abcde”, 3, 3.0
The program should call your solution to p01 as a function and work for any filename of this format.
ECE 1111: Engineering Computation I	Fall 2024
ECE 1111: Engineering Computation I	Fall 2024
