Lab No. 11: C++ Classes and I/O	Page 2 of 2
ECE 1111: Engineering Computation I
Laboratory No. 11: C++ Classes and I/O
Deposit your work in:
/data/courses/ece_1111/current/labs/lab_12/<lastname_firstname>
Goals: (1) Representation of data types common in engineering mathematics can be nicely done in C++ using many container classes available to you or integrating C data structures you have already developed. In this assignment, you will update your program started in lab no. 5 to use a class to hold and manipulate the matrices. (2) Tokenizing data is one of those messy little things we must do frequently when coding. In this lab, you will demonstrate the ability to tokenize an input string.
Deliverables:
[1] Source Code: a collection of files in one directory that meets the assignment’s requirements (e.g., Makefile, header file, main driver program).
[2] Check Off: Demonstrate that your program runs successfully. Answer questions about data types and scope.
Description:
Create a C++ class that can read a matrix from a file and operate on it. Your class must have these public methods:
Class MyMatrix {
MyMatrix();
bool MyMatrix::read(char *);
bool MyMatrix::display(FILE* fp);
}
The matrix must be stored as protected data in the class using a data structure that supports non-rectangular matrices (e.g., a vector of vectors). The class should have functions to do the operations described below and should overload the “+”, “-“ and “*” operators.
Your main program should have this interface:
mymath.exe -operation addition <filename1> <filename2>
similar to the previous lab. You should support matrix addition, subtraction, and multiplication. If the matrices cannot be operated on due to incompatible dimensions, you should print an informative error message.
The input matrices can be non-rectangular (e.g., the length of each row is variable). The input file only has floating-point values. It does not have the dimensions of the matrix stated explicitly:
nedc_000_[1]: cat example.txt
2.1 3.1
99.27 -23.45
-33.3
-99.99 -100.01 999.999 0.35
Your output should look like this:
NNN: 0000.0000 0000.0000 0000.0000 ...
For example (use %10.4f):
 1: 2.1000 3.1000
 2: 99.2700 -23.4500
 3: -33.3000
 4: -99.9900 -100.0100 999.9990 0.3500
Read each matrix into a vector of vectors stored as internal data in the class. Your matrix class should be called MyMatrix.
Your code should be organized into these files: Makefile, mymatrix.h, mat_00.cc and mymath.cc. The header file should have your class definition. The source file, mat_00.cc, should have implementations of all your supporting member functions.
You must also be able to step through your code using Visual Studio.
Deposit your work in:
/data/courses/ece_1111/current/labs/lab_11/<lastname_firstname>
Summary:
Engineering math can be implemented very efficiently in C/C++. Though high-level languages like Python are very popular for engineering mathematics today, computationally-intensive tasks can run much faster in C/C++. The ability to write flexible, data-driven programs that implement this kind of math is a major outcome from this course.
ECE 1111: Engineering Computation I	Fall 2023
ECE 1111: Engineering Computation I	Fall 2023
