Lab No. 10: Command Line Arguments	Page 2 of 2
ECE 1111: Engineering Computation I
Laboratory No. 10: Command Line Arguments
Deposit your work in:
/data/courses/ece_1111/current/labs/lab_10/<lastname_firstname>
Goals: The data structure used to store command line arguments, argv, is one of the more interesting routine data structures you will be see in C. This lab teaches you the basics of command line parsing and how to access information in argv. This lab also teaches you how to write flexible C programs that take command line arguments as parameters to your program.
This lab must be executed using Visual Studio IDE. You will be asked to demonstrate an ability to load, run and debug a program in Visual Studio. Refer to this tutorial to get started:
https://isip.piconepress.com/courses/temple/ece_1111/resources/tutorials/tips_vscode/20220303_debugging.mp4
Deliverables:
[1] Source Code: one program that performs the tasks below. Be sure to include all files in a single directory. You must use a make file, a header file and multiple source files as discussed in class.
[2] Check Off: Demonstrate that your program runs successfully and supports the help option. Show the teaching assistant that you can step through the code using the Visual Studio debugger.
Description:
Write a C program that supports the following interface:
mycalculator.exe -x 2.0 -y 3.0 -operation multiplication
 **> 2.0000 * 3.0000 = 6.0000
You should support these operations: multiplication (*), division (/), addition (+) and subtraction (-). You should display the result using the format above. Here are additional examples:
mycalculator.exe -x 2.0 -y 3.0 -operation division
 **> 2.0 / 3.0 = 0.3333
mycalculator.exe -x 2.0 -y 3.0 -operation addition
 **> 2.0000 + 3.0000 = 5.0000
mycalculator.exe -x 2.0 -y 3.0 -operation subtraction
 **> 2.0000 - 3.0000 = -1.0000
You must also support a “-help” option. If “-help” or “-HELP” appears anywhere on the command line, you should display a help message stored in a text file. Use the system command and the Linux command “more”, which you will call from within your program, to display the help file.
For example, any of these command lines will produce a help message:
mycalculator.exe -x 2.0 -help -y 3.0 -operation division
mycalculator.exe -x 2.0 -y 3.0 -operation division -HELP
mycalculator.exe -x 2.0 -help -y 3.0 -operation -help division
Also, if the user supplies an insufficient number of arguments or an incorrect argument, an error message is displayed, and a one-line message is displayed showing how to use the command. To see how this works in an actual program, try these commands:
nedc_999_[1]: nedc_gen_feats -help
nedc_999_[1]: nedc_gen_feats -ffo
Look at the files in:
$NEDC_NFC/util/cpp/nedc_gen_feats/
to see examples of how this can be implemented and to see examples of the types of messages you should generate. Use the associated files as templates.
Summary:
Programs should be flexible and extensible. This begins with using command line arguments to control the behavior of your programs. In this lab, you learn the basics of how to parse and manipulate command line parameters and arguments. You also become familiar with the Linux language used to describe command line functionality (e.g. options, arguments).

ECE 1111: Engineering Computation I	Spring 2023
ECE 1111: Engineering Computation I	Spring 2023
