Lab No. 5: Arrays and Strings	Page 2 of 2
ECE 1111: Engineering Computation I
Laboratory No. 5: Arrays and Strings
Goals: Help you develop an understanding of how to do basic engineering mathematics. Also, we are introducing formal design and verification steps into this lab.
Deliverables:
[1] Diagram: explain how "char** argv" is organized in memory using a diagram. Explain how this is both similar and different to a traditional numeric vector.
[2] Source Code: a program that multiplies two matrices. The program’s name should be myprog.cc. It should compile with “gcc -lm -o myprog.exe myprog.cc” or “g++ -lm -o myprog.exe myprog.cc” (if you use the new and delete operators).
[3] Check Off: Demonstrate that your program runs successfully and produces the same result as Excel. Explain how your code implements the flow chart you have developed.
Deposit your work in:
/data/courses/ece_1111/current/labs/lab_05/<lastname_firstname>
Description:
In this lab, we will introduce you to some simple operations involving matrices. We will use the file I/O tools you developed in previous assignments. All computations, including I/O, are to be done using floats (32-bit floating point numbers). The specific tasks are:
(1) Write a program that loads two matrices from a text file. Specify a dimension followed by the values of the matrices. Test your code using identity matrices. Then demonstrate that your program works for arbitrary matrices as long as they are the same dimension. Verify your answers using Excel.
(2) Using print statements, demonstrate how "argv[1]" is organized in memory (hint: pay attention to the last value). Relate your answer to your diagram.
For (1), a simple test case would be an identity matrix:
nedc_000_[1]: more m.txt
3 3
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
3 3
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
The interface to your program should be:
myprog.exe <filename>
The output of your program should be a nicely formatted display of the inputs and the outputs. Note that matrix multiplication of a matrix with an identity matrix produces the input matrix, so you can use the above example for the initial set of test cases to debug your code.
Here is another simple test case:
Input 1: rows = 3, cols = 3
0: 1.0 0.0 1.0
1: 0.0 1.0 0.0
2: 0.0 0.0 1.0

Input 2: rows = 3, cols = 3
0: 1.0 0.0 1.0
1: 0.0 1.0 0.0
2: 0.0 0.0 1.0

Matrix Multiplication Result: rows = 3, cols = 3
0: 1.0 0.0 2.0
1: 0.0 1.0 0.0
2: 0.0 0.0 1.0
Your program should work for any size matrix. It should produce an error message if the matrices are not the same dimension. Your inputs and outputs should be properly formatted. Remember to comment your code.
You will probably find this tutorial helpful with your I/O: https://www.programmingsimplified.com/c-program-add-matrices.
[bookmark: end_of_document]Summary:
Vectors, or an array as we often refer to it, and matrices (technically simply a multidimensional array) are fundamental to the way we write code to implement engineering mathematics. In this lab, we cover the basics of how these types are stored in memory. Once we formally introduce pointers, array representations will make much more sense.
ECE 1111: Engineering Computation I	Fall 2020
ECE 1111: Engineering Computation I	Fall 2020
