Lab No. 2: Basic C Syntax	Page 2 of 2
ECE 1111: Engineering Computation I
Laboratory No. 2: Basic C Syntax
Goal: Demonstrate that you can create a simple C program, save its output to a file, and postprocess that file using Unix commands. We also want you to feel comfortable using Google search to find answers to your questions. Some of these exercises in this lab are not extensively explained. You will need to use Google search to learn more.
Deliverables:
[1] Source Code: Do all your work in this directory:
/data/courses/ece_1111/current/labs/lab_02/<lastname_firstname>
[2] Check Off: You will arrange a meeting with your TA during the lab session. The TA will ask you to make a small modification to your print statement, compile and run your program, and manipulate the output file using command line tools.
Description:
[1] Simple Print Statements
We have previously seen how a simple C program to print a message to the terminal can be implemented using the following commands:
#include <stdio.h>
int main(int argc, char** argv) {
fprintf(stdout, "hello world\n");
}
Modify this code to declare a floating-point variable named “sum”, set its value to 27.0, and print the program name. Your output should follow this format exactly (delete the "hello world" message):
The name of my program is <insert name here>.
The value of sum is 27.0.
The program name resides in the variable argv[0], which we will explain in the coming weeks. Hint: review lab no. 1 to see examples of how to do the things requested above.
[2] Redirecting Standard Output (stdout)
Let’s assume your program name is “myprog.exe”. Create a directory called “tmp” using the mkdir command. Store the output of your program in this directory by redirecting a program to a file:
myprog.exe > ./tmp/myprog_1.txt
As we discussed in class, the “>” sign instructs the program to direct output to the corresponding file. The “~” character denotes your home directory. Re-run this command and send the output to your home directory:
myprog.exe > ~/myprog_2.txt
myprog.exe > $HOME/myprog_3.txt
You now have 3 versions of the same file in the directory tree that starts with your home directory. Let’s demonstrate how we can use find to locate and manipulate these files.
Run find to locate these files:
cd
find . -name "*.txt"
The first command returns you to your home directory. The second command searches all the files in the directory tree that starts with your home directory. How many files are returned?
[3] Postprocessing with Command Line Tools
Filter this output using grep:
find . -name "*.txt" | grep prog
How many files are returned? Why?
find . -name "*.txt" | grep prog_2 | wc
What did the wc command do?
Execute the following command and explain what it does:
find . -name "*.txt" -exec ls -l {} \;
Is there another way to implement the functionality provided by this command?
Using what you have learned, in the following directory tree:
/data/courses/ece_1111/current/resources/data
locate all filenames with the text “679” in their names and the words “male” and “seizure” appearing on the same line. (Hint: use the "-name" option with find and add the grep command.) How many files are there that match this specification?
[bookmark: end_of_document]Summary:
You have also learned some basic C syntax, such as how to print text messages and how to create a variable. You have also reinforced your ability to create, compile and run programs from the Amazon AWX IDE.
Combining simple Unix commands into more powerful commands using pipes is one way we can create complex programs very quickly. The command line is an important part of the tools you use to be productive on a computer. In this lab, you have learned how to redirect the output of your program to a file, and how to postprocess those files using command line tools.
ECE 1111: Engineering Computation I	Fall 2020
ECE 1111: Engineering Computation I	Fall 2020
