Lab No. 3: Bits, Bytes, ASCII	Page 2 of 2
ECE 1111: Engineering Computation I
Laboratory No. 3: Bits, Bytes, ASCII and
Binary Coded Decimal Representations
Goals: Help you develop an understanding of how characters and integers are represented and manipulated on a computer. Reinforce the importance of using Google search to learn how to program.
Deliverables:
[1] Source Code: (1) a program that generates a properly-formatted ASCII table (myprog_01.cc); and (2) a program that functions similar to the Unix command "cat" (mycat_02.cc).
[2] Check Off: Demonstrate that your programs run successfully and answer questions about numeric representations. Explain how the decimal codes below are implemented and why the values you are printing make sense when you examine the corresponding bit patterns.
Description:
In this lab, you will need to use a loop. Though we haven't covered this yet, you can easily read about these and follow the templates below. There are two types of loops you might need:
for loop:
for (long i = 0; i < 128; i++) {
fprintf(stdout, "the value of i is: %d\n", i);
}
while loop:
bool status = true;
long i = 0;
while (status) {
fprintf(stdout, "the value of i is: %d\n", i);
i++;
}
The first loop, which is a for loop, simply iterates from 0 to 127. The second loop runs as long as the Boolean variable, status, is true. Ideally, you would set this variable to false inside the while statement when some condition, such as end of file, failed.
You should find these useful in the tasks below:
[1] Write a program that prints out an ASCII table similar to this one: http://www.asciitable.com/. Your output should look as similar to this as possible:

| Dec | Hex | Oct | Char |
| 000 | 000 | 000 | (null) |
...
065	041	101	A
066	042	102	B
127	07F	177	DEL
[bookmark: _GoBack]----------------------------
Note that "..." is not part of the requirement. It simply indicates I am skipping entries in the table. Your program should print all 256 values.
[2] Write a program that functions similar to the Unix command "cat":
cat filename.txt
Your program should process only one file, but I should be able to specify that file from the command line (e.g., "filename.txt" can be any valid filename). Your program should print the contents of the file to stdout line by line as cat does.
Note that you can easily find code for this on the Internet or in several textbooks. Read the file character by character for now. Later we will relax that requirement.
[bookmark: end_of_document]Summary:
One of the attractive features of the C programming language is that you can easily manipulate low-level software such as bit and byte manipulations. Virtually everything in the Unix operating system is written in C. This was one of the major innovations of Unix – the operating system was written in what was considered a high-level language rather than assembly code.
Simple programs such as "cat" are very useful. Learning how to loop over a file until you reach the end of file is a very common way that we write flexible code. Since you don't know how many lines are in a file, you have to loop until there is no more data to read.
Finally, most of the programs we write will process command line arguments. This is another way we make our programs flexible. You should be able to process any file the user specifies from the command line, and you should produce informative error messages when the file doesn't exist.
ECE 1111: Engineering Computation I	Spring 2019
ECE 1111: Engineering Computation I	Spring 2019
