Lab No. 11: Program Structure	Page 2 of 2
ECE 1111: Engineering Computation I
Laboratory No. 11: Program Structure
Goals: Understanding how some basic Unix commands and C library functions work is a good way to strengthen your programming core. In this assignment, you will emulate the Unix command sort. This will involve the development of a linked list library, implementation of a sort function that operates on a linked list, and application of the structured programming tools we have been developing (e.g., make files).
Deliverables:
[1] Flow Chart: a graphical representation of the design of your program.
[2] Source Code: one program that functionally operates just like the Unix command “sort <filename>”. Be sure to include all files in a single directory. You must use a make file, a header file and multiple source files as discussed in class.
[3] Check Off: Demonstrate that your program runs successfully. Show the teaching assistant that you can step through the code using the Cloud9 debugger.
Description:
Write a C program that supports the following interface:
mysort.exe <filename>
cat <filename> | mysort.exe
Your program should load the file line by line into a linked list, sort it, and print the sorted file to stdout. You can assume the largest line you need to process, MAX_LINE_LEN, is 9,999 characters long. You can limit your sort to a lexical sort for the moment (it should produce the same results as the default behavior for the Unix sort command).
Your code should be organized into these files: Makefile, ll.h, ll_00.cc, libll.a, and mysort.cc. The header file should have the definitions of your linked list functions. The source file, ll_00.cc, should have implementations of all your linked list functions. You should create and link with a library, libll.a.
You will have to do some research on the sort algorithm. Begin by Google searching for Bubble Sort and QuickSort. You will need to sort nodes in the linked list. You should not duplicate memory.
Compare the run-time efficiency of your code to sort by timing your code on some very large files. Make sure the total CPU time for the job that you time is on the order of 100 seconds when you time your code so that you get a realistic comparison of the required compute time.
Summary:
Sort is an incredibly useful command in Unix. Its application extends far beyond the simple act of sorting data. For example, we can use it to find duplicate files in a database of millions of files. Sort is extremely fast and memory efficient. The data is read in a single pass and sorting is done by making extensive use of pointers. Sort also works for very large files and incrementally adds memory as it needs to. This implementation discussed in this lab is a first step towards writing such an efficient utility.
[bookmark: _GoBack]Sorting is one example of the important role that algorithms play in computer software. There are many sort algorithms depending on what your constraints are (e.g., minimizing memory or runtime). There is no universally best sort algorithm though there are some approaches that work very well across a wide range of applications. 
An important goal in software development is maximizing resuse without duplicating code. Your header file and library file allow other programmers to use your linked list implementation. Make sure you provide a set of functions that makes this implementation useful for general tasks. Soon we will see how to do this with C++ classes.


ECE 1111: Engineering Computation I	Fall 2018
