EE XXXX — Information Theory Spring Semester 1997			
1997-1998 Catalog Data:	EE XXXX: Information Theory. Lecture 3. Credit 3. Entropy; Mutual Information; Markov Chains; Source Coding; Hypothesis Testing; Fisher Information; Rate Distortion Theory; applications to detection/estimation theory, communications, and financial modeling. Prerequisite: Consent of instructor.		
Textbook:	T.M. Cover and J.A. Thomas, <i>Elements of Information Theory,</i> Wiley Interscience, 1991.		
Reference:	R.M. Gray, <i>Entropy and Information Theory,</i> Springer- Verlag, 1990.		
Coordinator:	Joseph Picone, Associate Professor of Electrical and Computer Engineering		
Goals:	To provide the student with a thorough understanding of the concepts of entropy and information, and how to apply these to real world problems such as speech recognition, language modeling, signal compression, and financial modeling. A secondary goal is to develop a mathematically rigorous understanding of methods for measuring and manipulating various measures of information in signals and systems.		

Prerequisites by Topic:

- 1. Basic probability and statistics.
- 2. Linear system theory.
- 3. Signals and system theory.
- 4. Communications theory.
- 5. Exposure to Markov processes and state machines.

Topics:

- 1. Definitions of Entropy and Mutual Information (6 classes)
- 2. Markov Processes (7 classes)
- 3. Optimal Coding (6 classes)
- 4. Gaussian Channels (8 classes)
- 5. Hypothesis Testing (4 classes)
- 6. Rate Distortion Theory (6 classes)
- 7. Applications to signal processing and financial modeling (5 classes)
- 8. Exams (3 classes)

EE XXXX — Information Theory (Continued)

Computer Usage:

Though applications of this material abound on computers, this particular course is taught from a theoretical perspective and does not directly require computer work. However, an optional computer-based project can be assigned at the instructor's discretion, usually consisting of a small project demonstrating an application of information theory. This assignment can be executed in Matlab or C/C++ on a Unix computer or a PC. Basic familiarity with email, file transfer utilities, and Internet browsers is assumed as students will be expected to interact with web-based materials.

Laboratory: N/A

ABET category content as estimated by faculty member who prepared this course description:

Engineering Science:	3.0 credits	or 1	00%
Engineering Design:	0.0 credits	or	0%